Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1982, Volume 27, Issue 1, Pages 81–94 (Mi tvp2272)  

This article is cited in 35 scientific papers (total in 35 papers)

Bounds for the risks of nonparametric estimates of the regression

I. A. Ibragimova, R. Z. Has'minskiĭb

a Leningrad
b Moscow
Abstract: Let us assume that the observations $Y_1,\dots,Y_N$ have the form (0.1) and that it is known only that $f$ belongs to the set $\Sigma$ of $2\pi$-periodical functions in some functional space. We consider the loss function of the type $l(\|\hat f_N-f\|_\infty)$, where $l(x)$ increases for $x>0$, and prove that the equidistant experimental design and the estimator (1.4) for $f$ are asymptotically optimal in the sense of the rate of convergence of risks for the wide class of sets $\Sigma$ if the integer $n$ in (1.4) satisfies the equation (1.14). In particular, the optimal order of the rate of convergence is $(N/\ln N)^{-\beta/(2\beta+1)}$ if $\Sigma$ is the set of periodical functions with smoothness $\beta$.
Received: 05.02.1970
English version:
Theory of Probability and its Applications, 1982, Volume 27, Issue 1, Pages 84–99
DOI: https://doi.org/10.1137/1127008
Bibliographic databases:
Language: Russian
Citation: I. A. Ibragimov, R. Z. Has'minskiǐ, “Bounds for the risks of nonparametric estimates of the regression”, Teor. Veroyatnost. i Primenen., 27:1 (1982), 81–94; Theory Probab. Appl., 27:1 (1982), 84–99
Citation in format AMSBIB
\Bibitem{IbrKha82}
\by I.~A.~Ibragimov, R.~Z.~Has'minski{\v\i}
\paper Bounds for the risks of nonparametric estimates of the regression
\jour Teor. Veroyatnost. i Primenen.
\yr 1982
\vol 27
\issue 1
\pages 81--94
\mathnet{http://mi.mathnet.ru/tvp2272}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=645130}
\zmath{https://zbmath.org/?q=an:0508.62036|0494.62042}
\transl
\jour Theory Probab. Appl.
\yr 1982
\vol 27
\issue 1
\pages 84--99
\crossref{https://doi.org/10.1137/1127008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983QB14800008}
Linking options:
  • https://www.mathnet.ru/eng/tvp2272
  • https://www.mathnet.ru/eng/tvp/v27/i1/p81
  • This publication is cited in the following 35 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:398
    Full-text PDF :152
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024