Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2004, Volume 49, Issue 2, Pages 373–382
DOI: https://doi.org/10.4213/tvp227
(Mi tvp227)
 

This article is cited in 39 scientific papers (total in 39 papers)

Short Communications

On an effective solution of the optimal stopping problem for random walks

A. A. Novikova, A. N. Shiryaevb

a University of Technology, Sydney
b Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We find a solution of the optimal stopping problem for the case when a reward function is an integer power function of a random walk on an infinite time interval. It is shown that an optimal stopping time is a first crossing time through a level defined as the largest root of Appell's polynomial associated with the maximum of the random walk. It is also shown that a value function of the optimal stopping problem on the finite interval $\{0,1\ldots T\}$ converges with an exponential rate as $T\to\infty$ to the limit under the assumption that jumps of the random walk are exponentially bounded.
Keywords: optimal stopping, random walk, rate of convergence, Appell polynomials.
Received: 01.07.2002
English version:
Theory of Probability and its Applications, 2005, Volume 49, Issue 2, Pages 344–354
DOI: https://doi.org/10.1137/S0040585X97981093
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Novikov, A. N. Shiryaev, “On an effective solution of the optimal stopping problem for random walks”, Teor. Veroyatnost. i Primenen., 49:2 (2004), 373–382; Theory Probab. Appl., 49:2 (2005), 344–354
Citation in format AMSBIB
\Bibitem{NovShi04}
\by A.~A.~Novikov, A.~N.~Shiryaev
\paper On an effective solution of the optimal
stopping problem for random walks
\jour Teor. Veroyatnost. i Primenen.
\yr 2004
\vol 49
\issue 2
\pages 373--382
\mathnet{http://mi.mathnet.ru/tvp227}
\crossref{https://doi.org/10.4213/tvp227}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2144307}
\zmath{https://zbmath.org/?q=an:1092.60018}
\transl
\jour Theory Probab. Appl.
\yr 2005
\vol 49
\issue 2
\pages 344--354
\crossref{https://doi.org/10.1137/S0040585X97981093}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000230308000011}
Linking options:
  • https://www.mathnet.ru/eng/tvp227
  • https://doi.org/10.4213/tvp227
  • https://www.mathnet.ru/eng/tvp/v49/i2/p373
  • This publication is cited in the following 39 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:837
    Full-text PDF :224
    References:98
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024