|
Teoriya Veroyatnostei i ee Primeneniya, 1971, Volume 16, Issue 3, Pages 495–503
(Mi tvp2262)
|
|
|
|
This article is cited in 32 scientific papers (total in 33 papers)
On the expected number of real zeros of random polynomials. II. Coefficients with non-zero means
I. A. Ibragimov, N. B. Maslova Leningrad
Abstract:
Let $\xi_j$, $j=0,1\dots,$ be independent identically distributed random variables with $\mathbf E\xi_j\ne0$ belonging to the domain of attraction of the normal law.
The main result is the following relation:
$$
\mathbf E\{N_n\mid Q_n(x)\not\equiv0\}\sim\frac1\pi\ln n\quad(n\to\infty)
$$
where $Q_n(x)=\sum_{j=0}^n\xi_jx^j$ and $N_n$ is the number of real roots of $Q_n$.
Received: 10.11.1969
Citation:
I. A. Ibragimov, N. B. Maslova, “On the expected number of real zeros of random polynomials. II. Coefficients with non-zero means”, Teor. Veroyatnost. i Primenen., 16:3 (1971), 495–503; Theory Probab. Appl., 16:3 (1971), 485–493
Linking options:
https://www.mathnet.ru/eng/tvp2262 https://www.mathnet.ru/eng/tvp/v16/i3/p495
|
Statistics & downloads: |
Abstract page: | 458 | Full-text PDF : | 207 |
|