Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1971, Volume 16, Issue 3, Pages 446–457 (Mi tvp2258)  

This article is cited in 35 scientific papers (total in 35 papers)

On an inequality in the theory of stochastic integrals

N. V. Krylov

Moscow
Abstract: Let
$$ x_t=\int_0^t\sigma_s\,d\xi_s+\int_0^tb_s\,ds $$
be an $n$-dimensional stochastic integral, $U$ be a bounded domain in the $n$-dimensional Euclidean space, $x'\in U$, $\tau$ be the first exit time of $x'+x_t$ out of $U$. Let $|b_t|\le M\cdot\sqrt[n]{\det\sigma_t^2}$ for all $t$$\omega$.
In the paper, a constant $N$ is proved to exist that depends only on $n$ and the diameter of $U$ such that, for all Borel functions $f$
$$ \mathbf M\int_0^\tau|f(x'+x_t)|\sqrt[n]{\det\sigma_t^2}\,dt\le N\|f\|_{L_n,U}. $$

The proof is based on the theory of convex polyhedrons.
Received: 13.01.1970
English version:
Theory of Probability and its Applications, 1971, Volume 16, Issue 3, Pages 438–448
DOI: https://doi.org/10.1137/1116048
Bibliographic databases:
Language: Russian
Citation: N. V. Krylov, “On an inequality in the theory of stochastic integrals”, Teor. Veroyatnost. i Primenen., 16:3 (1971), 446–457; Theory Probab. Appl., 16:3 (1971), 438–448
Citation in format AMSBIB
\Bibitem{Kry71}
\by N.~V.~Krylov
\paper On an inequality in the theory of stochastic integrals
\jour Teor. Veroyatnost. i Primenen.
\yr 1971
\vol 16
\issue 3
\pages 446--457
\mathnet{http://mi.mathnet.ru/tvp2258}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=298792}
\zmath{https://zbmath.org/?q=an:0238.60038}
\transl
\jour Theory Probab. Appl.
\yr 1971
\vol 16
\issue 3
\pages 438--448
\crossref{https://doi.org/10.1137/1116048}
Linking options:
  • https://www.mathnet.ru/eng/tvp2258
  • https://www.mathnet.ru/eng/tvp/v16/i3/p446
  • This publication is cited in the following 35 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:365
    Full-text PDF :170
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024