Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1971, Volume 16, Issue 2, Pages 360–366 (Mi tvp2236)  

This article is cited in 2 scientific papers (total in 2 papers)

Short Communications

On a minimax analogue of the weak law of large numbers

B. G. Pittel'

Leningrad
Full-text PDF (358 kB) Citations (2)
Abstract: Let $U$ and $V$ be two finite sets and, for any $u_1,u_2,\dots\in U$, $v_1,v_2,\dots\in V$, $x_t^{u_t,v_t}$ be independent non-negative random variables with distribution functions $F_{u_t,v_t}(x)$, $t=1,2,\dots$ respectively. At each time $t=1,\dots,n$ the first player chooses a probability distribution of $u_t$ depending on the observed data $x_1^{u_1,v_1},\dots,x_{t-1}^{u_{t-1},v_{t-1}}$. The second player makes his “move”: chooses a distribution for $v_t$ in the same way. Put
$$ w_n(x)=\sup\inf\mathbf P\{x_1^{u_1,v_1}+\dots+x_n^{u_n,v_n}\le nx\} $$
where supremum is taken over all the strategies of the first player and infimum over all the strategies of the second player.
The main result of the paper (Theorem 1) is:
For any $\varepsilon>0$, $w_n(a+\varepsilon)\to1$, $w_n(a-\varepsilon)\to0$ where $a=\operatornamewithlimits{val}_{u,v}\mathbf Mx^{u,v}$.
Received: 25.12.1969
English version:
Theory of Probability and its Applications, 1971, Volume 16, Issue 2, Pages 361–367
DOI: https://doi.org/10.1137/1116035
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: B. G. Pittel', “On a minimax analogue of the weak law of large numbers”, Teor. Veroyatnost. i Primenen., 16:2 (1971), 360–366; Theory Probab. Appl., 16:2 (1971), 361–367
Citation in format AMSBIB
\Bibitem{Pit71}
\by B.~G.~Pittel'
\paper On a~minimax analogue of the weak law of large numbers
\jour Teor. Veroyatnost. i Primenen.
\yr 1971
\vol 16
\issue 2
\pages 360--366
\mathnet{http://mi.mathnet.ru/tvp2236}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=288818}
\zmath{https://zbmath.org/?q=an:0247.60018}
\transl
\jour Theory Probab. Appl.
\yr 1971
\vol 16
\issue 2
\pages 361--367
\crossref{https://doi.org/10.1137/1116035}
Linking options:
  • https://www.mathnet.ru/eng/tvp2236
  • https://www.mathnet.ru/eng/tvp/v16/i2/p360
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024