Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1983, Volume 28, Issue 4, Pages 653–667 (Mi tvp2214)  

This article is cited in 1 scientific paper (total in 1 paper)

Representation of a semi-Marcov process as a time changed Markov process

B. P. Harlamov

Leningrad
Full-text PDF (911 kB) Citations (1)
Abstract: Let $(P_x)$ be a $\lambda$-continuous and $\lambda$-regular semi-Markov process on a complete separable locally compact metric space $X$ and let $A_\lambda=A_0+A_\lambda 1\cdot I$ be the $\lambda$-characteristical operator of the process. If $\lambda R_\lambda\varphi\to\varphi$ ($\lambda\to\infty$) uniformly on $X$ where $\varphi\in C_0$ and $R_\lambda$ is the resolvent operator of the process and if $A_\lambda 1$ is continuous negative function on $X$, $A_{0+}1=0$, $A_\lambda 1\to -\infty$ ($\lambda\to\infty$) then for all $\lambda_0>0$ there exists a Markov process which differs from $(P_x)$ by random change of time only. The operator $\bar A=-(\lambda_0/A_{\lambda_0})$ is an infinitesimal operator of the Markov process and
$$ a_t(\lambda)=\lambda_0\int_0^t\frac{A_{\lambda}1}{A_{\lambda_0}1}\circ\pi_s\,ds\qquad(\lambda>0) $$
($\pi_s(\xi)=\xi(s)$, $\xi$ is a trajectory of the process) is a Laplace family of additive functionals which determines the random change of time.
Received: 14.02.1981
English version:
Theory of Probability and its Applications, 1984, Volume 28, Issue 3, Pages 688–702
DOI: https://doi.org/10.1137/1128068
Bibliographic databases:
Language: Russian
Citation: B. P. Harlamov, “Representation of a semi-Marcov process as a time changed Markov process”, Teor. Veroyatnost. i Primenen., 28:4 (1983), 653–667; Theory Probab. Appl., 28:3 (1984), 688–702
Citation in format AMSBIB
\Bibitem{Har83}
\by B.~P.~Harlamov
\paper Representation of a semi-Marcov process as a~time changed Markov process
\jour Teor. Veroyatnost. i Primenen.
\yr 1983
\vol 28
\issue 4
\pages 653--667
\mathnet{http://mi.mathnet.ru/tvp2214}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=726892}
\zmath{https://zbmath.org/?q=an:0561.60094|0539.60088}
\transl
\jour Theory Probab. Appl.
\yr 1984
\vol 28
\issue 3
\pages 688--702
\crossref{https://doi.org/10.1137/1128068}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984TV66700004}
Linking options:
  • https://www.mathnet.ru/eng/tvp2214
  • https://www.mathnet.ru/eng/tvp/v28/i4/p653
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:181
    Full-text PDF :84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024