Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1983, Volume 28, Issue 3, Pages 544–554 (Mi tvp2197)  

This article is cited in 15 scientific papers (total in 15 papers)

On the sequential hypotheses testing for signals in white Gaussian noise

G. K. Golubev, R. Z. Has'minskiĭ

Moscow
Abstract: The problem of the sequential testing of hypotheses $H_i$, $i=1,\dots,N$, where hypotheses $H_i$ are described by the observed process (1.1), is considered. Let the assumption (1.3) be fulfilled and let $\pi_i(t)$ be defined by the formula (2.3), where $P_i(\,\cdot\,)$ is the measure corresponding to the observed process (1.1). It is proved that the decision rule (2.4) guarantees the asymptotically minimum expectation of time $\tau_\alpha^*$ of making the decision, if the probability of error $\alpha$ tends to zero. It is proved also that this optimal expectation of $\tau_\alpha^*$ satisfies the equation (2.6). It is found that the asymptotically optimal decision rule supplies the gain approximately in $4^\lambda$ times in comparison with the best nonsequential decision rule if $\alpha\ll 1$.
Received: 06.05.1980
English version:
Theory of Probability and its Applications, 1984, Volume 28, Issue 3, Pages 573–584
DOI: https://doi.org/10.1137/1128052
Bibliographic databases:
Language: Russian
Citation: G. K. Golubev, R. Z. Has'minskiǐ, “On the sequential hypotheses testing for signals in white Gaussian noise”, Teor. Veroyatnost. i Primenen., 28:3 (1983), 544–554; Theory Probab. Appl., 28:3 (1984), 573–584
Citation in format AMSBIB
\Bibitem{GolKha83}
\by G.~K.~Golubev, R.~Z.~Has'minski{\v\i}
\paper On the sequential hypotheses testing for signals in white Gaussian noise
\jour Teor. Veroyatnost. i Primenen.
\yr 1983
\vol 28
\issue 3
\pages 544--554
\mathnet{http://mi.mathnet.ru/tvp2197}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=716311}
\zmath{https://zbmath.org/?q=an:0541.62064|0527.62078}
\transl
\jour Theory Probab. Appl.
\yr 1984
\vol 28
\issue 3
\pages 573--584
\crossref{https://doi.org/10.1137/1128052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984SY24800009}
Linking options:
  • https://www.mathnet.ru/eng/tvp2197
  • https://www.mathnet.ru/eng/tvp/v28/i3/p544
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :93
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024