Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1998, Volume 43, Issue 4, Pages 798–808
DOI: https://doi.org/10.4213/tvp2170
(Mi tvp2170)
 

This article is cited in 2 scientific papers (total in 2 papers)

Short Communications

On the smoothness and singularity of invariant measures and transition probabilities of infinite-dimensional diffusions

N. A. Tolmachev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract: We construct two examples of nondegenerate diffusion specified by the stochastic differential equation
$$ d\xi_t=\sigma (\xi_t)\,dW_t + B(\xi_t)\,dt $$
in a Hilbert space $X$, where $\sigma (x)=I+\sigma_0(x)$ and $B(x)=\Lambda x+v(x)$; here $\Lambda$ is a continuous linear operator on $X$ and $\sigma_0$ and $v$ are infinitely Fréchet differentiable mappings with values in the spaces of nuclear operators on $X$ and in $X$, respectively, derivatives of any order of which are bounded. These diffusions possess the following properties: (i) In the first example, $\Lambda x =-\frac12 x$ and $\xi_t$ has a (unique) invariant measure which, the same as its transition probabilities, has no directions along which it is differentiable (and even continuous); (ii) in the second example, $\xi_t$ has two different invariant probability measures $\nu_1$ and $\nu_2$ such that $\nu_1$ is equivalent to a Gaussian measure and is differentiable, whereas $\nu_2$ has no directions along which it is nonsingular (or even continuous). In addition, for any $\varepsilon >0$ one can select $\sigma_0$ and $v$ in such a way that they vanish out of the $\varepsilon$-ball and have norms not exceeding $\varepsilon$ (in the spaces of nuclear operators on $X$ and in $X$, respectively).
Keywords: infinite-dimensional space, diffusion, transition probabilities, invariant measure, smoothness and singularity of measures, exceptional set, Hilbert space.
Received: 22.01.1998
English version:
Theory of Probability and its Applications, 1999, Volume 43, Issue 4, Pages 655–664
DOI: https://doi.org/10.1137/S0040585X97977240
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. A. Tolmachev, “On the smoothness and singularity of invariant measures and transition probabilities of infinite-dimensional diffusions”, Teor. Veroyatnost. i Primenen., 43:4 (1998), 798–808; Theory Probab. Appl., 43:4 (1999), 655–664
Citation in format AMSBIB
\Bibitem{Tol98}
\by N.~A.~Tolmachev
\paper On the~smoothness and~singularity of~invariant measures and~transition probabilities of~infinite-dimensional diffusions
\jour Teor. Veroyatnost. i Primenen.
\yr 1998
\vol 43
\issue 4
\pages 798--808
\mathnet{http://mi.mathnet.ru/tvp2170}
\crossref{https://doi.org/10.4213/tvp2170}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1692377}
\zmath{https://zbmath.org/?q=an:0953.60048}
\transl
\jour Theory Probab. Appl.
\yr 1999
\vol 43
\issue 4
\pages 655--664
\crossref{https://doi.org/10.1137/S0040585X97977240}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000085137600012}
Linking options:
  • https://www.mathnet.ru/eng/tvp2170
  • https://doi.org/10.4213/tvp2170
  • https://www.mathnet.ru/eng/tvp/v43/i4/p798
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024