|
Teoriya Veroyatnostei i ee Primeneniya, 1983, Volume 28, Issue 1, Pages 169–175
(Mi tvp2166)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Short Communications
On the exit of random walk out of the curvilinear domain
M. U. Gafurov, V. I. Rotar' Moscow
Abstract:
Let $S_0=0$, $S_n=X_1+\dots+X_n$, where $X_1,X_2,\dots$ are i. i. d. r. v.'s; let $\varphi(x)$, $g(x)$ be regularly varying strictly increasing positive functions and $g(n)\ n^{-1/2}\to\infty$, $n\to\infty$.
Let $N_g=\min\{n\colon S_n>g(n)\}$, $S_g=S_{N_g}$, $\chi_g=S_g-g(N_g)$,
$q_\infty=\mathbf P\{|S_k|\le g(k)\ \forall\,k\}$.
The typical result of the paper is the following
Theorem. {\it Let for any $c>0$
$$
\sum_{n=1}^\infty\varphi(g(n))n^{-1}\exp\{-cg^2(n)\,n^{-1}\}<\infty.
$$
Then $\mathbf E[\varphi(S_g)\mid N_g<\infty]<\infty$ if (and in the case $q_\infty>0$ only if)
$$
\mathbf E\varphi(X_1^+)G(X_1^+)<\infty,\qquad\text{where}\quad G=g^{-1}.
$$ }
The analogous results are obtained for $N_g$, $\chi_g$.
Received: 21.03.1980
Citation:
M. U. Gafurov, V. I. Rotar', “On the exit of random walk out of the curvilinear domain”, Teor. Veroyatnost. i Primenen., 28:1 (1983), 169–175; Theory Probab. Appl., 28:1 (1984), 179–184
Linking options:
https://www.mathnet.ru/eng/tvp2166 https://www.mathnet.ru/eng/tvp/v28/i1/p169
|
Statistics & downloads: |
Abstract page: | 237 | Full-text PDF : | 83 | First page: | 1 |
|