Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1983, Volume 28, Issue 1, Pages 169–175 (Mi tvp2166)  

This article is cited in 3 scientific papers (total in 3 papers)

Short Communications

On the exit of random walk out of the curvilinear domain

M. U. Gafurov, V. I. Rotar'

Moscow
Full-text PDF (445 kB) Citations (3)
Abstract: Let $S_0=0$, $S_n=X_1+\dots+X_n$, where $X_1,X_2,\dots$ are i. i. d. r. v.'s; let $\varphi(x)$, $g(x)$ be regularly varying strictly increasing positive functions and $g(n)\ n^{-1/2}\to\infty$, $n\to\infty$. Let $N_g=\min\{n\colon S_n>g(n)\}$, $S_g=S_{N_g}$, $\chi_g=S_g-g(N_g)$, $q_\infty=\mathbf P\{|S_k|\le g(k)\ \forall\,k\}$.
The typical result of the paper is the following
Theorem. {\it Let for any $c>0$
$$ \sum_{n=1}^\infty\varphi(g(n))n^{-1}\exp\{-cg^2(n)\,n^{-1}\}<\infty. $$
Then $\mathbf E[\varphi(S_g)\mid N_g<\infty]<\infty$ if (and in the case $q_\infty>0$ only if)
$$ \mathbf E\varphi(X_1^+)G(X_1^+)<\infty,\qquad\text{where}\quad G=g^{-1}. $$
} The analogous results are obtained for $N_g$, $\chi_g$.
Received: 21.03.1980
English version:
Theory of Probability and its Applications, 1984, Volume 28, Issue 1, Pages 179–184
DOI: https://doi.org/10.1137/1128014
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. U. Gafurov, V. I. Rotar', “On the exit of random walk out of the curvilinear domain”, Teor. Veroyatnost. i Primenen., 28:1 (1983), 169–175; Theory Probab. Appl., 28:1 (1984), 179–184
Citation in format AMSBIB
\Bibitem{GafRot83}
\by M.~U.~Gafurov, V.~I.~Rotar'
\paper On the exit of random walk out of the curvilinear domain
\jour Teor. Veroyatnost. i Primenen.
\yr 1983
\vol 28
\issue 1
\pages 169--175
\mathnet{http://mi.mathnet.ru/tvp2166}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=691478}
\zmath{https://zbmath.org/?q=an:0531.60065|0515.60074}
\transl
\jour Theory Probab. Appl.
\yr 1984
\vol 28
\issue 1
\pages 179--184
\crossref{https://doi.org/10.1137/1128014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984SL53600014}
Linking options:
  • https://www.mathnet.ru/eng/tvp2166
  • https://www.mathnet.ru/eng/tvp/v28/i1/p169
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:237
    Full-text PDF :83
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024