Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1971, Volume 16, Issue 2, Pages 339–345 (Mi tvp2158)  

This article is cited in 30 scientific papers (total in 30 papers)

Short Communications

Minimax weights in a trend detection problem for a stochastic process

I. L. Legostaeva, A. N. Širyaev

Moscow
Abstract: Let $F_n(M)$ be the class of real functions of the form $f(t)=a_0+a_1t+\dots+ a_nt^n+\mathrm g(t)t^{n+1}$ where $\sup\limits_t|\mathrm g(t)|\le M$, $-\infty<t<\infty$.
The problem considered is to estimate the regression coefficient $a_0=f(0)$ from the data $\xi(t)=f(t)+\eta(t)$, $\eta(t)$ being a white noise process ($\mathbf M\eta(t)=0$, $\mathbf M\eta(s)\eta(t)=d^2\delta(t-s)$). For the class of linear estimators $\widehat f(0)=\int_{-\infty}^\infty l(t)\xi(t)\,dt$, a weight $l^*(t)$ is called minimax if
$$ \sup_{f\in F_n(M)}\Delta(l^*,f)=\inf_l\sup_{f\in F_n(M)}\Delta(l,f) $$
where $\Delta(l,f)=\mathbf M[f(0)-\widehat f(0)]^2$.
Theorem 1 gives necessary and sufficient conditions for a weight to be minimax. For $n=0$ and $n=1$ minimax weights are obtained in Theorem 2.
Received: 06.07.1970
English version:
Theory of Probability and its Applications, 1971, Volume 16, Issue 2, Pages 344–349
DOI: https://doi.org/10.1137/1116031
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. L. Legostaeva, A. N. Širyaev, “Minimax weights in a trend detection problem for a stochastic process”, Teor. Veroyatnost. i Primenen., 16:2 (1971), 339–345; Theory Probab. Appl., 16:2 (1971), 344–349
Citation in format AMSBIB
\Bibitem{LegShi71}
\by I.~L.~Legostaeva, A.~N.~{\v S}iryaev
\paper Minimax weights in a~trend detection problem for a~stochastic process
\jour Teor. Veroyatnost. i Primenen.
\yr 1971
\vol 16
\issue 2
\pages 339--345
\mathnet{http://mi.mathnet.ru/tvp2158}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=292220}
\zmath{https://zbmath.org/?q=an:0237.62060}
\transl
\jour Theory Probab. Appl.
\yr 1971
\vol 16
\issue 2
\pages 344--349
\crossref{https://doi.org/10.1137/1116031}
Linking options:
  • https://www.mathnet.ru/eng/tvp2158
  • https://www.mathnet.ru/eng/tvp/v16/i2/p339
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024