|
Teoriya Veroyatnostei i ee Primeneniya, 1971, Volume 16, Issue 2, Pages 229–248
(Mi tvp2144)
|
|
|
|
This article is cited in 47 scientific papers (total in 48 papers)
On the expected number of real zeros of random polynomials I. Coefficients with zero means
I. A. Ibragimov Leningrad
Abstract:
Let $\xi_j$, $j=0,1,\dots$, be independent identically distributed random variables with $\mathbf E\xi_j=0$ and belong to the domain of attraction of the normal law.
The main result is:
$$
\mathbf E\{N_n\mid Q_n(x)\not\equiv0\}\underset{n\to\infty}\sim\frac2\pi\ln n\quad\text{if }\mathbf P\{\xi_j\ne0\}>0
$$
where $Q_n(x)=\sum_{j=0}^n\xi_jx^j$, $N_n$ is the number of real roots of $Q_n$.
Received: 01.07.1969
Citation:
I. A. Ibragimov, “On the expected number of real zeros of random polynomials I. Coefficients with zero means”, Teor. Veroyatnost. i Primenen., 16:2 (1971), 229–248; Theory Probab. Appl., 16:2 (1971), 228–248
Linking options:
https://www.mathnet.ru/eng/tvp2144 https://www.mathnet.ru/eng/tvp/v16/i2/p229
|
|