|
Teoriya Veroyatnostei i ee Primeneniya, 1971, Volume 16, Issue 2, Pages 218–228
(Mi tvp2143)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Estimations in the theorem of the stability of Poisson distribution decompositions
J. J. Mačys Institute of Physics and Mathematics, Academy of Sciences, Lithuanian SSR
Abstract:
Let $\Pi_\lambda$ be a Poisson distribution function and $F=F_1*F_2$ a distribution function such that either in the Lévy metric or in the uniform metric $\rho(F,\Pi_\lambda)\le\varepsilon$.
We show that, there exists a Poisson distribution function $\Pi_{\lambda_1}$ such that
$$
\rho(F_1,\Pi_{\lambda_1})<C(\lambda)\sqrt{\frac{\ln(-\ln\varepsilon)}{(-\ln\varepsilon)}}.
$$
Citation:
J. J. Mačys, “Estimations in the theorem of the stability of Poisson distribution decompositions”, Teor. Veroyatnost. i Primenen., 16:2 (1971), 218–228; Theory Probab. Appl., 16:2 (1971), 215–227
Linking options:
https://www.mathnet.ru/eng/tvp2143 https://www.mathnet.ru/eng/tvp/v16/i2/p218
|
Statistics & downloads: |
Abstract page: | 183 | Full-text PDF : | 74 |
|