Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2004, Volume 49, Issue 3, Pages 610–614
DOI: https://doi.org/10.4213/tvp212
(Mi tvp212)
 

This article is cited in 3 scientific papers (total in 3 papers)

Short Communications

$d$-dimensional pressureless Gas equations

A. Dermoune

University of Sciences and Technologies
Full-text PDF (569 kB) Citations (3)
References:
Abstract: Let $x\in R^d\to u(x,0)$ be a continuous bounded function and $\rho(dx,0)$ a probability measure on $R^d$. For all random variables $X_0$ with probability distribution $\rho(dx,0)$, we show that the stochastic differential equation (SDE)
$$ X_t = X_0 + \int_0^t E\big[u(X_0,0)\,|\, X_s\big]\,ds,\qquad t\ge 0, $$
has a solution which is a $\sigma(X_0)$-measurable Markov process. We derive a weak solution for the pressureless gas equation for $d \ge 1$, with initial distribution of masses $\rho(dx,0)$ and initial velocity $u(\cdot,0)$. We show for $d = 1$ the existence of a unique Markov process $(X_t)$ solution of our SDE.
Keywords: pressureless gas equations, variational principles.
Received: 10.10.2001
English version:
Theory of Probability and its Applications, 2005, Volume 49, Issue 3, Pages 540–545
DOI: https://doi.org/10.1137/S0040585X97981251
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. Dermoune, “$d$-dimensional pressureless Gas equations”, Teor. Veroyatnost. i Primenen., 49:3 (2004), 610–614; Theory Probab. Appl., 49:3 (2005), 540–545
Citation in format AMSBIB
\Bibitem{Der04}
\by A.~Dermoune
\paper $d$-dimensional pressureless
Gas equations
\jour Teor. Veroyatnost. i Primenen.
\yr 2004
\vol 49
\issue 3
\pages 610--614
\mathnet{http://mi.mathnet.ru/tvp212}
\crossref{https://doi.org/10.4213/tvp212}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2144873}
\zmath{https://zbmath.org/?q=an:1089.60054}
\transl
\jour Theory Probab. Appl.
\yr 2005
\vol 49
\issue 3
\pages 540--545
\crossref{https://doi.org/10.1137/S0040585X97981251}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232261200011}
Linking options:
  • https://www.mathnet.ru/eng/tvp212
  • https://doi.org/10.4213/tvp212
  • https://www.mathnet.ru/eng/tvp/v49/i3/p610
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024