Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2004, Volume 49, Issue 3, Pages 601–609
DOI: https://doi.org/10.4213/tvp211
(Mi tvp211)
 

This article is cited in 7 scientific papers (total in 7 papers)

Short Communications

Unified limit theorems for increments of processes with independent increments

A. N. Frolov

Saint-Petersburg State University
References:
Abstract: A unified theory is constructed which describes the a.s. (almost surely) behavior of increments of stochastically continuous homogeneous processes with independent increments. This theory includes the strong law of large numbers, the Erdös–Rényi law, the Shepp law, the Csörgő–Révész law, and the law of the iterated logarithm. The range of applicability of the results is extended from several particular cases to the whole class of stochastically continuous homogeneous processes with independent increments.
Keywords: increments of processes with independent increments, Erdös–Rényi law, Shepp law, the law of large numbers, the law of the iterated logarithm.
Received: 23.05.2003
English version:
Theory of Probability and its Applications, 2005, Volume 49, Issue 3, Pages 531–540
DOI: https://doi.org/10.1137/S0040585X9798124X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. N. Frolov, “Unified limit theorems for increments of processes with independent increments”, Teor. Veroyatnost. i Primenen., 49:3 (2004), 601–609; Theory Probab. Appl., 49:3 (2005), 531–540
Citation in format AMSBIB
\Bibitem{Fro04}
\by A.~N.~Frolov
\paper Unified limit theorems for increments of processes with independent increments
\jour Teor. Veroyatnost. i Primenen.
\yr 2004
\vol 49
\issue 3
\pages 601--609
\mathnet{http://mi.mathnet.ru/tvp211}
\crossref{https://doi.org/10.4213/tvp211}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2144872}
\zmath{https://zbmath.org/?q=an:1098.60032}
\transl
\jour Theory Probab. Appl.
\yr 2005
\vol 49
\issue 3
\pages 531--540
\crossref{https://doi.org/10.1137/S0040585X9798124X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232261200010}
Linking options:
  • https://www.mathnet.ru/eng/tvp211
  • https://doi.org/10.4213/tvp211
  • https://www.mathnet.ru/eng/tvp/v49/i3/p601
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:336
    Full-text PDF :176
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024