Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2004, Volume 49, Issue 3, Pages 596–601
DOI: https://doi.org/10.4213/tvp210
(Mi tvp210)
 

This article is cited in 14 scientific papers (total in 14 papers)

Short Communications

On the Skitovich–Darmois theorem for discrete abelian groups

G. M. Feldmana, P. Graczykb

a B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine
b Département de Mathématiques, Université d'Angers
References:
Abstract: The following theorem is proved: Let $X$ be a discrete countable Abelian group, let $\xi_1,\xi_2$ be independent random variables with values in the group $X$ and with distributions $\mu_1,\mu_2$, and let $\alpha_j,\beta_j$, $j=1, 2$, be automorphisms of the group $X$. Then the independence of the linear statistics $L_1=\alpha_1\xi_1 + \alpha_2\xi_2$ and $L_2=\beta_1\xi_1 + \beta_2\xi_2$ implies that $\mu_1$ and $\mu_2$ are idempotent distributions.
Keywords: independent linear statistics, discrete Abelian group, Skitovich–Darmois theorem.
Received: 11.06.2002
English version:
Theory of Probability and its Applications, 2005, Volume 49, Issue 3, Pages 527–531
DOI: https://doi.org/10.1137/S0040585X97981238
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. M. Feldman, P. Graczyk, “On the Skitovich–Darmois theorem for discrete abelian groups”, Teor. Veroyatnost. i Primenen., 49:3 (2004), 596–601; Theory Probab. Appl., 49:3 (2005), 527–531
Citation in format AMSBIB
\Bibitem{FelGra04}
\by G.~M.~Feldman, P.~Graczyk
\paper On the Skitovich--Darmois theorem for discrete abelian groups
\jour Teor. Veroyatnost. i Primenen.
\yr 2004
\vol 49
\issue 3
\pages 596--601
\mathnet{http://mi.mathnet.ru/tvp210}
\crossref{https://doi.org/10.4213/tvp210}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2144871}
\zmath{https://zbmath.org/?q=an:1094.60003}
\transl
\jour Theory Probab. Appl.
\yr 2005
\vol 49
\issue 3
\pages 527--531
\crossref{https://doi.org/10.1137/S0040585X97981238}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232261200009}
Linking options:
  • https://www.mathnet.ru/eng/tvp210
  • https://doi.org/10.4213/tvp210
  • https://www.mathnet.ru/eng/tvp/v49/i3/p596
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:399
    Full-text PDF :155
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024