|
This article is cited in 14 scientific papers (total in 14 papers)
Short Communications
On the Skitovich–Darmois theorem for discrete abelian groups
G. M. Feldmana, P. Graczykb a B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine
b Département de Mathématiques, Université d'Angers
Abstract:
The following theorem is proved: Let $X$ be a discrete
countable Abelian group,
let $\xi_1,\xi_2$ be independent random variables with values in the group
$X$ and with distributions $\mu_1,\mu_2$, and
let $\alpha_j,\beta_j$, $j=1, 2$,
be automorphisms of the group $X$. Then the independence of the linear
statistics $L_1=\alpha_1\xi_1 + \alpha_2\xi_2$ and $L_2=\beta_1\xi_1 +
\beta_2\xi_2$ implies that $\mu_1$ and $\mu_2$
are idempotent distributions.
Keywords:
independent linear statistics, discrete Abelian group, Skitovich–Darmois theorem.
Received: 11.06.2002
Citation:
G. M. Feldman, P. Graczyk, “On the Skitovich–Darmois theorem for discrete abelian groups”, Teor. Veroyatnost. i Primenen., 49:3 (2004), 596–601; Theory Probab. Appl., 49:3 (2005), 527–531
Linking options:
https://www.mathnet.ru/eng/tvp210https://doi.org/10.4213/tvp210 https://www.mathnet.ru/eng/tvp/v49/i3/p596
|
Statistics & downloads: |
Abstract page: | 390 | Full-text PDF : | 152 | References: | 61 |
|