Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1997, Volume 42, Issue 3, Pages 603–608
DOI: https://doi.org/10.4213/tvp2002
(Mi tvp2002)
 

This article is cited in 3 scientific papers (total in 3 papers)

Short Communications

Large deviations of random variables with a finite number of approximately evaluated cumulants

V. I. Bakhtin

Belarusian State University, Faculty of Physics
Full-text PDF (307 kB) Citations (3)
Abstract: The paper establishes a theorem on exact asymptotics of probabilities of large deviations for random variables with known estimates for only a finite number of cumulants, the latter being subject to conditions of simultaneous growth. For instance, let $S_n$ be a sequence of real random variables and assume the existence of a sequence of small in a sense random variables $G_n(\xi)$ depending on $\xi$ analytically and such that
$$ \mathsf{E}\exp(\xi S_n+G_n(\xi))=\exp\sum_{j=2}^m\frac{\Gamma_{nj}}{j!}\xi^j. $$

If all the cumulants $\Gamma_{nj}$ have order $n$ and the order of $G_n(\xi)$ does not exceed $n\xi^{m+1}$, then the Cramér type probabilities of large deviations can be indicated for $S_n$.
Keywords: random variables, distribution function, cumulant, large deviations, Cramer asymptotics.
Received: 26.09.1994
Revised: 13.09.1995
English version:
Theory of Probability and its Applications, 1998, Volume 42, Issue 3, Pages 513–517
DOI: https://doi.org/10.1137/S0040585X97976325
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Bakhtin, “Large deviations of random variables with a finite number of approximately evaluated cumulants”, Teor. Veroyatnost. i Primenen., 42:3 (1997), 603–608; Theory Probab. Appl., 42:3 (1998), 513–517
Citation in format AMSBIB
\Bibitem{Bak97}
\by V.~I.~Bakhtin
\paper Large deviations of random variables with a finite number of approximately evaluated cumulants
\jour Teor. Veroyatnost. i Primenen.
\yr 1997
\vol 42
\issue 3
\pages 603--608
\mathnet{http://mi.mathnet.ru/tvp2002}
\crossref{https://doi.org/10.4213/tvp2002}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1618740}
\zmath{https://zbmath.org/?q=an:0915.60042}
\transl
\jour Theory Probab. Appl.
\yr 1998
\vol 42
\issue 3
\pages 513--517
\crossref{https://doi.org/10.1137/S0040585X97976325}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000078491200011}
Linking options:
  • https://www.mathnet.ru/eng/tvp2002
  • https://doi.org/10.4213/tvp2002
  • https://www.mathnet.ru/eng/tvp/v42/i3/p603
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:241
    Full-text PDF :156
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024