Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2004, Volume 49, Issue 4, Pages 816–826
DOI: https://doi.org/10.4213/tvp200
(Mi tvp200)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

Absolute continuity between a Gibbs measure and its translate

E. Nowak

University of Sciences and Technologies
References:
Abstract: We look for an overestimation of the distance in total variation between a Gibbs measure on $R^{Z^d}$ and its translate by a vector of this space. This can be done thanks to a control of the interdependence between the spins at distinct sites, i.e., prescribing some restrictions for the associated potential. We can then conclude, for precise cases, with the equivalence of the initial measure and its translate.
Keywords: random fields, distance in total variation, Gibbs measures, equivalence of measures.
Received: 27.07.2000
Revised: 29.08.2002
English version:
Theory of Probability and its Applications, 2005, Volume 49, Issue 4, Pages 713–724
DOI: https://doi.org/10.1137/S0040585X97981421
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. Nowak, “Absolute continuity between a Gibbs measure and its translate”, Teor. Veroyatnost. i Primenen., 49:4 (2004), 816–826; Theory Probab. Appl., 49:4 (2005), 713–724
Citation in format AMSBIB
\Bibitem{Now04}
\by E.~Nowak
\paper Absolute continuity between a Gibbs measure
and its translate
\jour Teor. Veroyatnost. i Primenen.
\yr 2004
\vol 49
\issue 4
\pages 816--826
\mathnet{http://mi.mathnet.ru/tvp200}
\crossref{https://doi.org/10.4213/tvp200}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2144254}
\zmath{https://zbmath.org/?q=an:1093.60006}
\transl
\jour Theory Probab. Appl.
\yr 2005
\vol 49
\issue 4
\pages 713--724
\crossref{https://doi.org/10.1137/S0040585X97981421}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234407500012}
Linking options:
  • https://www.mathnet.ru/eng/tvp200
  • https://doi.org/10.4213/tvp200
  • https://www.mathnet.ru/eng/tvp/v49/i4/p816
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024