|
Teoriya Veroyatnostei i ee Primeneniya, 1984, Volume 29, Issue 1, Pages 120–123
(Mi tvp1966)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Short Communications
On the existence of a strong solution of an Ito stochastic differential equation
I. V. Fedorenko Krasnodar
Abstract:
It is shown that the scalar stochastic differential equation
$$
x_t=x_0+\int_0^t A(s,x_s)\,ds+\int_0^t B(s,x_s)\,dw_s,\qquad 0\le t\le T,
$$
has at least one strong solution under the following conditions:
a) scalar functions $A(t,x)$ and $B(t,x)$ are continuous in both $t$, $x$ for $0\le t\le T$,
$-\infty<x<\infty$;
b) $B(t,x)$ satisfies a local Lipschitz conditions in $x$;
c) $|A(t,x)|+ |B(t,x)|\le L(1+|x|)$ for some constant $L$ and all $t$, $x$;
d) $\mathbf Mx_0^2<\infty$.
Received: 06.07.1981
Citation:
I. V. Fedorenko, “On the existence of a strong solution of an Ito stochastic differential equation”, Teor. Veroyatnost. i Primenen., 29:1 (1984), 120–123; Theory Probab. Appl., 29:1 (1985), 121–123
Linking options:
https://www.mathnet.ru/eng/tvp1966 https://www.mathnet.ru/eng/tvp/v29/i1/p120
|
|