Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1984, Volume 29, Issue 1, Pages 79–92 (Mi tvp1960)  

This article is cited in 11 scientific papers (total in 11 papers)

Local Bahadur optimality and characterization problems

Ya. Yu. Nikitin

Leningrad
Abstract: Let $X_1,X_2,\dots$ be i. i. d. observations with a common distribution function $G(x;\theta)$. Consider the problem of testing the null hypothesis $H_0:\,\theta=0$ against $H_1:\,\theta>0$ on the basis of a sequence of test statistics $\{T_n=T_n(X_1,\dots,X_n)\}$ with an exact Bahadur slope $c_T(\theta)$. The sequence $\{T_n\}$ is said to be locally optimal if $c_T(\theta)\sim 2K(\theta)$, $\theta\to 0$, where $K(\theta)$ is the Kullback–Leibler information number. The aim of the paper is to describe the class of distribution functions $G(x,\theta)$ (the domain of local Bahadur optimality) for which some well-known nonparametric statistics such as Kolmogorov–Smirnov $\omega^2$, their two-sample analogues and linear rank statistics are locally optimal. If $\theta$ is a location or a scale parameter, this domain consists of a single law, e. g. of the Laplace distribution for Kolmogorov–Smirnov statistic and the hyperbolic cosine distribution for $\omega^2$-statistic in the location case.
Received: 12.02.1982
English version:
Theory of Probability and its Applications, 1985, Volume 29, Issue 1, Pages 79–92
DOI: https://doi.org/10.1137/1129007
Bibliographic databases:
Language: Russian
Citation: Ya. Yu. Nikitin, “Local Bahadur optimality and characterization problems”, Teor. Veroyatnost. i Primenen., 29:1 (1984), 79–92; Theory Probab. Appl., 29:1 (1985), 79–92
Citation in format AMSBIB
\Bibitem{Nik84}
\by Ya.~Yu.~Nikitin
\paper Local Bahadur optimality and characterization problems
\jour Teor. Veroyatnost. i Primenen.
\yr 1984
\vol 29
\issue 1
\pages 79--92
\mathnet{http://mi.mathnet.ru/tvp1960}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=739502}
\zmath{https://zbmath.org/?q=an:0576.62033|0537.62018}
\transl
\jour Theory Probab. Appl.
\yr 1985
\vol 29
\issue 1
\pages 79--92
\crossref{https://doi.org/10.1137/1129007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985AFG0600007}
Linking options:
  • https://www.mathnet.ru/eng/tvp1960
  • https://www.mathnet.ru/eng/tvp/v29/i1/p79
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024