Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1970, Volume 15, Issue 4, Pages 745–749 (Mi tvp1942)  

This article is cited in 5 scientific papers (total in 5 papers)

Short Communications

On parametric hypotheses testing with nonparametric tests

Yu. N. Tyurin

Moscow
Full-text PDF (316 kB) Citations (5)
Abstract: Let $\xi_1,\dots,\xi_n$ be a sample with a theoretical distribution function s$F(t,\theta)$. Here $\theta$ is an unknown $r$-dimensional parameter. We consider the “regular” case when its maximum likelihood estimator $\theta^*$ has usual asymptotical properties. We denote the empirical distribution function by $F_n(t)$.
In this paper, limiting properties of $\sqrt n[F_n(t)-F(t,\theta^*)]$ are discussed. It is proved that $\lim\sqrt n[F_n(t)-F(t,\theta^*)]$ is a conditioned Gaussian process. After a natural change of the time variable $s=F(t,\theta^*)$ we obtain a conditioned Wiener process $v(s)$ on $[0,1]$ satisfying $r$ linear conditions
$$ \int_0^1m_i(s,\theta)\,dv(s)=0,\quad i=1,\dots,r, $$
and $v(1)=0$. If $\theta$ is the location-scale parameter the conditions are free of $\theta$. A linear transformation $v\to\tilde v$ is constructed, where the Wiener process $\tilde v(s)$ satisfies $r+1$ conditions:
$$ \tilde v(0)=\tilde v(t_1)=\dots=\tilde v(t_r)=\tilde v(1)=0. $$
Quantities $0<t_1<\dots<t_r<1$ can be chosen arbitrarily.
Now it is possible to use for the process $\tilde v$ such well-known goodness-of-fit tests as Kolmogorov's or Cramer–von Mises' ones.
Received: 02.08.1969
English version:
Theory of Probability and its Applications, 1970, Volume 15, Issue 4, Pages 722–726
DOI: https://doi.org/10.1137/1115082
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. N. Tyurin, “On parametric hypotheses testing with nonparametric tests”, Teor. Veroyatnost. i Primenen., 15:4 (1970), 745–749; Theory Probab. Appl., 15:4 (1970), 722–726
Citation in format AMSBIB
\Bibitem{Tyu70}
\by Yu.~N.~Tyurin
\paper On parametric hypotheses testing with nonparametric tests
\jour Teor. Veroyatnost. i Primenen.
\yr 1970
\vol 15
\issue 4
\pages 745--749
\mathnet{http://mi.mathnet.ru/tvp1942}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=282479}
\zmath{https://zbmath.org/?q=an:0203.51501}
\transl
\jour Theory Probab. Appl.
\yr 1970
\vol 15
\issue 4
\pages 722--726
\crossref{https://doi.org/10.1137/1115082}
Linking options:
  • https://www.mathnet.ru/eng/tvp1942
  • https://www.mathnet.ru/eng/tvp/v15/i4/p745
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:399
    Full-text PDF :115
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024