Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2004, Volume 49, Issue 4, Pages 779–785
DOI: https://doi.org/10.4213/tvp193
(Mi tvp193)
 

Short Communications

A renewal equation in a multidimensional space

N. B. Engibaryan

Byurakan Astrophysical Observatory, National Academy of Sciences of Armenia
References:
Abstract: The following renewal equation in a multidimensional space (REMS) is considered
$$ f(x)=g(x)+\int_{R^n}K(x-t)\,f(t)\,dt, $$
where $K$ is the density of a distribution in $R^n$. Assuming that $g\in L_1(R^n)$ and that the nonzero vector of the first moment of $K$ is finite we prove the existence and uniqueness of a solution of an REMS within a certain class of functions. The renewal density for the solution of this equation is constructed and its properties are investigated. We give a probabilistic interpretation for our results by means of an example from the theory of random walks in $R^n$.
Keywords: renewal, multidimensional space, solvability, joint motion.
Received: 30.07.2002
English version:
Theory of Probability and its Applications, 2005, Volume 49, Issue 4, Pages 737–744
DOI: https://doi.org/10.1137/S0040585X97981366
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. B. Engibaryan, “A renewal equation in a multidimensional space”, Teor. Veroyatnost. i Primenen., 49:4 (2004), 779–785; Theory Probab. Appl., 49:4 (2005), 737–744
Citation in format AMSBIB
\Bibitem{Eng04}
\by N.~B.~Engibaryan
\paper A renewal equation in a multidimensional space
\jour Teor. Veroyatnost. i Primenen.
\yr 2004
\vol 49
\issue 4
\pages 779--785
\mathnet{http://mi.mathnet.ru/tvp193}
\crossref{https://doi.org/10.4213/tvp193}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2142567}
\zmath{https://zbmath.org/?q=an:1099.60060}
\transl
\jour Theory Probab. Appl.
\yr 2005
\vol 49
\issue 4
\pages 737--744
\crossref{https://doi.org/10.1137/S0040585X97981366}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234407500015}
Linking options:
  • https://www.mathnet.ru/eng/tvp193
  • https://doi.org/10.4213/tvp193
  • https://www.mathnet.ru/eng/tvp/v49/i4/p779
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:508
    Full-text PDF :176
    References:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024