Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1984, Volume 29, Issue 1, Pages 33–40 (Mi tvp1927)  

This article is cited in 6 scientific papers (total in 6 papers)

The invariance principle for weakly dependent variables

В. A. Lifšic

Leningrad
Full-text PDF (547 kB) Citations (6)
Abstract: Let $S_n=X_{n1}+\dots+X_{nn}$, $\mathbf DX_{nk}<\infty$, $\mathbf EX_{nk}=0$. Denote $\mathscr F_k=\mathscr F_{nk}=\sigma\{(X_{ns})_{s\ge k}\}$ and $E_kZ=\mathbf E(Z\mid\mathscr F_k)$. Let $\sigma$-field $\mathscr E^k=\sigma\{(E_j1_{X_{ni}<q})_{i\le j\le k,\,q\in R}\}$,
\begin{gather*} \gamma_n(r)=\sup_k\sup_{B\in\mathscr F_{k+r}}\sup_{A_1,A_2\in\mathscr E^k} |\mathbf P(B\mid A_1)- \mathbf(B\mid A_2)|, \\ l_n=\min_{m\ge 2}\biggl(1+\sum_{n/m>r\ge 1}\sqrt{\gamma_n(mr)}\biggr)^{1/2}\biggl(m+\sum_{r\ge 1}\gamma_n(r)\biggr),\quad B_n^2=\mathbf DS_n. \end{gather*}
We define the random functions on $[0, 1]$
$$ \xi_n(t)=B_n^{-1}\sum_{j\ge 1}X_{nj}\mathbf 1_{b_j\le tB_n^2},\qquad b_j=(\mathbf D-\mathbf DE_j)\sum_{k=1}^jX_{nk}, $$
and denote by $\mathscr L(\xi_n)$ the distribution of $\xi_n$ in the Skorohod space.
Theorem. {\it If $\displaystyle\lim_{n\to\infty}B_n^{-2}\biggl(l_n+\sum_{r=1}^{n-1}\sqrt{\gamma_n(r)}\biggr)\sum_{j=1}^n\mathbf EX_{nj}^2 1_{|X_{nj}|>\varepsilon B_n/l_n}=0$ for every $\varepsilon>0$, then $\mathscr L(\xi_n)$ converges weakly to a Wiener distribution.}
The estimate $\displaystyle\mathbf DS_n\ge\frac{1}{16}(1-\gamma_n(1))\sum_{k=1}^n\mathbf DX_{nk}$ is obtained also.
This theorem generalizes the well-known Dobrusin's results [9] for inhomogeneous Markow chains.
Received: 12.03.1980
English version:
Theory of Probability and its Applications, 1985, Volume 29, Issue 1, Pages 33–40
DOI: https://doi.org/10.1137/1129003
Bibliographic databases:
Language: Russian
Citation: В. A. Lifšic, “The invariance principle for weakly dependent variables”, Teor. Veroyatnost. i Primenen., 29:1 (1984), 33–40; Theory Probab. Appl., 29:1 (1985), 33–40
Citation in format AMSBIB
\Bibitem{Lif84}
\by В.~A.~Lif{\v s}ic
\paper The invariance principle for weakly dependent variables
\jour Teor. Veroyatnost. i Primenen.
\yr 1984
\vol 29
\issue 1
\pages 33--40
\mathnet{http://mi.mathnet.ru/tvp1927}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=739498}
\zmath{https://zbmath.org/?q=an:0535.60026|0554.60043}
\transl
\jour Theory Probab. Appl.
\yr 1985
\vol 29
\issue 1
\pages 33--40
\crossref{https://doi.org/10.1137/1129003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985AFG0600003}
Linking options:
  • https://www.mathnet.ru/eng/tvp1927
  • https://www.mathnet.ru/eng/tvp/v29/i1/p33
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:247
    Full-text PDF :94
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024