Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1984, Volume 29, Issue 1, Pages 19–32 (Mi tvp1926)  

This article is cited in 75 scientific papers (total in 75 papers)

On the nonparametric estimation of a value of a linear functional in the Gaussian white noise

I. A. Ibragimova, R. Z. Has'minskiĭb

a Leningrad
b Moscow
Abstract: Suppose we observe a random process $X_ \varepsilon(t)$, $0\le t\le 1$ satisfying the equation
\begin{equation} dX_\varepsilon(t)=s(t)\,dt +\varepsilon\,dw(t) \end{equation}
where $w$ is the standard Wiener process and the unknown function $s$ is assumed to belong to some symmetric closed convex subset $\Sigma$ of the space $L_2(0,1)$. Let $L$ be a linear functional defined on $\Sigma$. We consider the problem of estimation of the value $L(s)$ of $L$ at a point $s$ when $X_\varepsilon(t)$, $0\le t\le 1$ is observed.
Denote by $\mathscr M$ the set of all linear estimates of $L(s)$ i. e. estimates of the form $\displaystyle\int_0^1m(t)\,dX_\varepsilon(t)$. We proved that
1) $\displaystyle\inf_{\widehat L\in\mathscr M}\sup_{s\in\Sigma}\mathbf E_s(L(s)-\widehat L)^2 =\sup_{s\in\Sigma}\varepsilon^2\frac{L^2(s)} {\varepsilon^2+\|s\|^2}$.
2) If $\displaystyle\sup_{s\in\Sigma}\varepsilon^2\frac{L^2(s)}{\varepsilon^2+\|s\|^2} =\varepsilon^2\frac{L^2(s_\varepsilon)}{\varepsilon^2+\|s_\varepsilon\|^2}$ then $\displaystyle\int_0^1 m_\varepsilon(t)\,dX_\varepsilon(t)$, with $\displaystyle m_\varepsilon= s_ \varepsilon\frac{L(s_\varepsilon)}{\varepsilon^2+\|s_\varepsilon\|^2}$ is a minimax linear estimator.
Several examples are considered.
Received: 27.07.1982
English version:
Theory of Probability and its Applications, 1985, Volume 29, Issue 1, Pages 18–32
DOI: https://doi.org/10.1137/1129002
Bibliographic databases:
Language: Russian
Citation: I. A. Ibragimov, R. Z. Has'minskiǐ, “On the nonparametric estimation of a value of a linear functional in the Gaussian white noise”, Teor. Veroyatnost. i Primenen., 29:1 (1984), 19–32; Theory Probab. Appl., 29:1 (1985), 18–32
Citation in format AMSBIB
\Bibitem{IbrKha84}
\by I.~A.~Ibragimov, R.~Z.~Has'minski{\v\i}
\paper On the nonparametric estimation of a~value of a~linear functional in the Gaussian white noise
\jour Teor. Veroyatnost. i Primenen.
\yr 1984
\vol 29
\issue 1
\pages 19--32
\mathnet{http://mi.mathnet.ru/tvp1926}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=739497}
\zmath{https://zbmath.org/?q=an:0575.62076|0532.62061}
\transl
\jour Theory Probab. Appl.
\yr 1985
\vol 29
\issue 1
\pages 18--32
\crossref{https://doi.org/10.1137/1129002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985AFG0600002}
Linking options:
  • https://www.mathnet.ru/eng/tvp1926
  • https://www.mathnet.ru/eng/tvp/v29/i1/p19
  • This publication is cited in the following 75 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:455
    Full-text PDF :184
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024