Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2004, Volume 49, Issue 4, Pages 743–774
DOI: https://doi.org/10.4213/tvp192
(Mi tvp192)
 

This article is cited in 5 scientific papers (total in 5 papers)

On sharp large deviations for sums of random vectors and multidimensional Laplace approximation

Ph. Barbe, M. Broniatowski

CNRS — Laboratoire de Mathématiques Jean Leray, Département de Mathématiques, Universite de Nantes
References:
Abstract: Let $X, X_i,i\geq 1$, be a sequence of independent and identically distributed random vectors in $R^d$. Consider the partial sum $S_n:=X_1+\cdots +X_n$. Under some regularity conditions on the distribution of $X$, we obtain an asymptotic formula for $P\{S_n\in nA\}$, where $A$ is an arbitrary Borel set. Several corollaries follow, one of which asserts that, under the same regularity conditions, for any Borel set $A$, $\lim_{n\to\infty}n^{-1}\log P\{S_n\in nA\} =-I(A)$, where $I$ is a large deviation functional. We also prove a multidimensional Laplace-type approximation that allows an explicit calculation of the sharp large deviation probability typically when the set $A$ has a smooth boundary.
Keywords: large deviations, exponential family, differential geometry of surfaces, asymptotic analysis, Laplace method, Fourier transform.
Received: 30.01.2002
English version:
Theory of Probability and its Applications, 2005, Volume 49, Issue 4, Pages 561–588
DOI: https://doi.org/10.1137/S0040585X97981342
Bibliographic databases:
Language: English
Citation: Ph. Barbe, M. Broniatowski, “On sharp large deviations for sums of random vectors and multidimensional Laplace approximation”, Teor. Veroyatnost. i Primenen., 49:4 (2004), 743–774; Theory Probab. Appl., 49:4 (2005), 561–588
Citation in format AMSBIB
\Bibitem{BarBro04}
\by Ph.~Barbe, M.~Broniatowski
\paper On sharp large deviations for sums of random vectors and multidimensional Laplace approximation
\jour Teor. Veroyatnost. i Primenen.
\yr 2004
\vol 49
\issue 4
\pages 743--774
\mathnet{http://mi.mathnet.ru/tvp192}
\crossref{https://doi.org/10.4213/tvp192}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2142565}
\zmath{https://zbmath.org/?q=an:1100.60009}
\transl
\jour Theory Probab. Appl.
\yr 2005
\vol 49
\issue 4
\pages 561--588
\crossref{https://doi.org/10.1137/S0040585X97981342}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234407500001}
Linking options:
  • https://www.mathnet.ru/eng/tvp192
  • https://doi.org/10.4213/tvp192
  • https://www.mathnet.ru/eng/tvp/v49/i4/p743
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:438
    Full-text PDF :197
    References:87
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024