Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2004, Volume 49, Issue 4, Pages 653–671
DOI: https://doi.org/10.4213/tvp187
(Mi tvp187)
 

This article is cited in 17 scientific papers (total in 17 papers)

On the central limit theorem for Toeplitz quadratic forms of stationary sequences

A. A. Sahakian, M. S. Ginovyan

Institute of Mathematics, National Academy of Sciences of Armenia
References:
Abstract: Let $X(t)$, $t = 0,\pm1,\ldots$, be a real-valued stationary Gaussian sequence with a spectral density function $f(\lambda)$. The paper considers the question of applicability of the central limit theorem (CLT) for a Toeplitz-type quadratic form $Q_n$ in variables $X(t)$, generated by an integrable even function $g(\lambda)$. Assuming that $f(\lambda)$ and $g(\lambda)$ are regularly varying at $\lambda=0$ of orders $\alpha$ and $\beta$, respectively, we prove the CLT for the standard normalized quadratic form $Q_n$ in a critical case $\alpha+\beta=\frac{1}{2}$.
We also show that the CLT is not valid under the single condition that the asymptotic variance of $Q_n$ is separated from zero and infinity.
Keywords: stationary Gaussian sequence, spectral density, Toeplitz-type quadratic forms, central limit theorem, asymptotic variance, slowly varying functions.
Received: 17.05.2004
English version:
Theory of Probability and its Applications, 2005, Volume 49, Issue 4, Pages 612–628
DOI: https://doi.org/10.1137/S0040585X97981299
Bibliographic databases:
Language: Russian
Citation: A. A. Sahakian, M. S. Ginovyan, “On the central limit theorem for Toeplitz quadratic forms of stationary sequences”, Teor. Veroyatnost. i Primenen., 49:4 (2004), 653–671; Theory Probab. Appl., 49:4 (2005), 612–628
Citation in format AMSBIB
\Bibitem{SahGin04}
\by A.~A.~Sahakian, M.~S.~Ginovyan
\paper On the central limit theorem for Toeplitz quadratic forms
of stationary sequences
\jour Teor. Veroyatnost. i Primenen.
\yr 2004
\vol 49
\issue 4
\pages 653--671
\mathnet{http://mi.mathnet.ru/tvp187}
\crossref{https://doi.org/10.4213/tvp187}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2142560}
\zmath{https://zbmath.org/?q=an:1090.60021}
\transl
\jour Theory Probab. Appl.
\yr 2005
\vol 49
\issue 4
\pages 612--628
\crossref{https://doi.org/10.1137/S0040585X97981299}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234407500003}
Linking options:
  • https://www.mathnet.ru/eng/tvp187
  • https://doi.org/10.4213/tvp187
  • https://www.mathnet.ru/eng/tvp/v49/i4/p653
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:512
    Full-text PDF :192
    References:85
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024