Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1970, Volume 15, Issue 3, Pages 498–509 (Mi tvp1857)  

This article is cited in 270 scientific papers (total in 270 papers)

The invariance principle for stationary processes

Yu. A. Davydov

Leningrad
Abstract: Let $X_t$ be a stationary process, $\mathbf EX_t=0$, $\mathbf DX_t=\sigma^2<\infty$, $S_T=\sum_1^TX_t$ (discrete time), or $S_t=\int_0^TX_t\,dt$ (continuous time). Define $X_T(t)$ as in (1) or (2). Let $B_T(s,t)$ be the covariance function of $X_t(t)$. Let distribution $P_T$ correspond to the process $X_T(t)$ and distribution $W_\gamma$ correspond to a Gaussian process with the covariance function
$$ B_\gamma(s,t)=\frac12(s+t+|s^{1/\gamma}-t^{1/\gamma}|^\gamma). $$

Theorem 1. If $\psi(T)=\mathbf DS_T\uparrow\infty$, $P_T\Rightarrow W_\gamma$, then $B_T(s,t)\to B_\gamma(s,t)$ and $\psi(T)=T^\gamma h(T)$, where $h(T)$ is a slowly changing function.
Theorem 2. {\em Let $X_j=\sum_{i=-\infty}^\infty c_{i-j}\xi_i$ where $\xi_i$ are independent identically distributed random variables, $\mathbf E\xi_i=0$, $\mathbf E\xi_i^{2k}<\infty$ and $\sum c_j^2<\infty$. If $\mathbf DS_n=n^\gamma h(n)$, $2/(k+2)<\gamma\le2$, where $h(n)$ is a slowly changing function, then $P_n\Rightarrow W_\gamma$.}
In the next two theorems the invariance principle is proved for processes generated by mixing processes.
Received: 22.02.1968
English version:
Theory of Probability and its Applications, 1970, Volume 15, Issue 3, Pages 487–498
DOI: https://doi.org/10.1137/1115050
Bibliographic databases:
Language: Russian
Citation: Yu. A. Davydov, “The invariance principle for stationary processes”, Teor. Veroyatnost. i Primenen., 15:3 (1970), 498–509; Theory Probab. Appl., 15:3 (1970), 487–498
Citation in format AMSBIB
\Bibitem{Dav70}
\by Yu.~A.~Davydov
\paper The invariance principle for stationary processes
\jour Teor. Veroyatnost. i Primenen.
\yr 1970
\vol 15
\issue 3
\pages 498--509
\mathnet{http://mi.mathnet.ru/tvp1857}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=283872}
\zmath{https://zbmath.org/?q=an:0209.48904}
\transl
\jour Theory Probab. Appl.
\yr 1970
\vol 15
\issue 3
\pages 487--498
\crossref{https://doi.org/10.1137/1115050}
Linking options:
  • https://www.mathnet.ru/eng/tvp1857
  • https://www.mathnet.ru/eng/tvp/v15/i3/p498
  • This publication is cited in the following 270 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:719
    Full-text PDF :331
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024