Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1997, Volume 42, Issue 2, Pages 336–341
DOI: https://doi.org/10.4213/tvp1806
(Mi tvp1806)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

A probabilistic approach tо a nonlinear differential equation on a Riemannian manifold

E. B. Dynkin

Cornell University, Department of Mathematics, USA
Full-text PDF (351 kB) Citations (1)
Abstract: We investigate the minimal solution of the problem
\begin{gather*} Lu=u^\alpha в D, u=f на O, \end{gather*}
where $1\le\alpha\le2$, $D$ is an open subset f a Riemannian manifold, O is a regular relatively, open subset of $\partial D$, and $f$ is a mapping from $\partial D$ to $[0,\infty]$ which is continuous on $O$ and vanishes on $\partial D\setminus O$. An explicit formula for such a solution is given in terms of the $(L,\alpha)$-superdiffusion.
Keywords: nonlinear differential equations, Riemannian manifolds, $L$-diffusion, Markov process, minimal positive solution.
Received: 25.12.1996
English version:
Theory of Probability and its Applications, 1998, Volume 42, Issue 2, Pages 289–294
DOI: https://doi.org/10.1137/S0040585X97976143
Bibliographic databases:
Document Type: Article
Language: English
Citation: E. B. Dynkin, “A probabilistic approach tо a nonlinear differential equation on a Riemannian manifold”, Teor. Veroyatnost. i Primenen., 42:2 (1997), 336–341; Theory Probab. Appl., 42:2 (1998), 289–294
Citation in format AMSBIB
\Bibitem{Dyn97}
\by E.~B.~Dynkin
\paper A~probabilistic approach tо a~nonlinear differential equation on a~Riemannian manifold
\jour Teor. Veroyatnost. i Primenen.
\yr 1997
\vol 42
\issue 2
\pages 336--341
\mathnet{http://mi.mathnet.ru/tvp1806}
\crossref{https://doi.org/10.4213/tvp1806}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1474713}
\zmath{https://zbmath.org/?q=an:0910.58040}
\transl
\jour Theory Probab. Appl.
\yr 1998
\vol 42
\issue 2
\pages 289--294
\crossref{https://doi.org/10.1137/S0040585X97976143}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000074375200008}
Linking options:
  • https://www.mathnet.ru/eng/tvp1806
  • https://doi.org/10.4213/tvp1806
  • https://www.mathnet.ru/eng/tvp/v42/i2/p336
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:242
    Full-text PDF :149
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024