Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1997, Volume 42, Issue 2, Pages 262–273
DOI: https://doi.org/10.4213/tvp1802
(Mi tvp1802)
 

Regular Gaussian random operators and Strook–Varadhan theorem for symmetric stochastic Fredholm-type equations

A. M. Kulik

Institute of Mathematics, Ukrainian National Academy of Sciences
Abstract: Regular Gaussian functionals are introduced and studied; the results obtained are applied to the investigation of properties of the distribution of solutions of equations with Gaussian random operators. In particular, an analogue of the Strook–Varadhan theorem for linear stochastic Fredholm-type integral equations is proved.
Keywords: Gaussian white noise, regular random element, strong random operator, topological support of a measure.
Received: 07.04.1995
English version:
Theory of Probability and its Applications, 1998, Volume 42, Issue 2, Pages 244–253
DOI: https://doi.org/10.1137/S0040585X97976106
Bibliographic databases:
Language: Russian
Citation: A. M. Kulik, “Regular Gaussian random operators and Strook–Varadhan theorem for symmetric stochastic Fredholm-type equations”, Teor. Veroyatnost. i Primenen., 42:2 (1997), 262–273; Theory Probab. Appl., 42:2 (1998), 244–253
Citation in format AMSBIB
\Bibitem{Kul97}
\by A.~M.~Kulik
\paper Regular Gaussian random operators and Strook--Varadhan theorem for symmetric stochastic Fredholm-type equations
\jour Teor. Veroyatnost. i Primenen.
\yr 1997
\vol 42
\issue 2
\pages 262--273
\mathnet{http://mi.mathnet.ru/tvp1802}
\crossref{https://doi.org/10.4213/tvp1802}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1474709}
\zmath{https://zbmath.org/?q=an:0927.60068}
\transl
\jour Theory Probab. Appl.
\yr 1998
\vol 42
\issue 2
\pages 244--253
\crossref{https://doi.org/10.1137/S0040585X97976106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000074375200004}
Linking options:
  • https://www.mathnet.ru/eng/tvp1802
  • https://doi.org/10.4213/tvp1802
  • https://www.mathnet.ru/eng/tvp/v42/i2/p262
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024