|
This article is cited in 2 scientific papers (total in 2 papers)
On the Kolmogorov–Hajek–Rényi inequality for normed integrals of weakly dependent processes
B. V. Bondarev Донецкий госуниверситет, кафедра алгебры и теории вероятностей, Украина
Abstract:
We consider a process of the form $\zeta_\varepsilon(t)=\sqrt{\varepsilon}\int_0^{t/\varepsilon}\eta(s)\,ds$, $t\in [0,1]$, where $\eta(t)$, $t\ge0$, is a strictly stationary process with zero mean satisfying either the uniform strong mixing condition or the absolute regularity condition and find an estimate from below for the probability of the event that $|\zeta_{\varepsilon}(t)|$, $t\in [0,1]$, lies within a domain with growing curved boundaries.
Keywords:
uniformly strong mixing, absolute regularity, spiral, martingale, representation.
Received: 04.04.1995
Citation:
B. V. Bondarev, “On the Kolmogorov–Hajek–Rényi inequality for normed integrals of weakly dependent processes”, Teor. Veroyatnost. i Primenen., 42:2 (1997), 225–238; Theory Probab. Appl., 42:2 (1998), 213–224
Linking options:
https://www.mathnet.ru/eng/tvp1800https://doi.org/10.4213/tvp1800 https://www.mathnet.ru/eng/tvp/v42/i2/p225
|
|