Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1997, Volume 42, Issue 2, Pages 225–238
DOI: https://doi.org/10.4213/tvp1800
(Mi tvp1800)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the Kolmogorov–Hajek–Rényi inequality for normed integrals of weakly dependent processes

B. V. Bondarev

Донецкий госуниверситет, кафедра алгебры и теории вероятностей, Украина
Full-text PDF (556 kB) Citations (2)
Abstract: We consider a process of the form $\zeta_\varepsilon(t)=\sqrt{\varepsilon}\int_0^{t/\varepsilon}\eta(s)\,ds$, $t\in [0,1]$, where $\eta(t)$, $t\ge0$, is a strictly stationary process with zero mean satisfying either the uniform strong mixing condition or the absolute regularity condition and find an estimate from below for the probability of the event that $|\zeta_{\varepsilon}(t)|$, $t\in [0,1]$, lies within a domain with growing curved boundaries.
Keywords: uniformly strong mixing, absolute regularity, spiral, martingale, representation.
Received: 04.04.1995
English version:
Theory of Probability and its Applications, 1998, Volume 42, Issue 2, Pages 213–224
DOI: https://doi.org/10.1137/S0040585X97976088
Bibliographic databases:
Language: Russian
Citation: B. V. Bondarev, “On the Kolmogorov–Hajek–Rényi inequality for normed integrals of weakly dependent processes”, Teor. Veroyatnost. i Primenen., 42:2 (1997), 225–238; Theory Probab. Appl., 42:2 (1998), 213–224
Citation in format AMSBIB
\Bibitem{Bon97}
\by B.~V.~Bondarev
\paper On the Kolmogorov--Hajek--R\'enyi inequality for normed integrals of weakly dependent processes
\jour Teor. Veroyatnost. i Primenen.
\yr 1997
\vol 42
\issue 2
\pages 225--238
\mathnet{http://mi.mathnet.ru/tvp1800}
\crossref{https://doi.org/10.4213/tvp1800}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1474707}
\zmath{https://zbmath.org/?q=an:0910.60023}
\transl
\jour Theory Probab. Appl.
\yr 1998
\vol 42
\issue 2
\pages 213--224
\crossref{https://doi.org/10.1137/S0040585X97976088}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000074375200002}
Linking options:
  • https://www.mathnet.ru/eng/tvp1800
  • https://doi.org/10.4213/tvp1800
  • https://www.mathnet.ru/eng/tvp/v42/i2/p225
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024