Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2007, Volume 52, Issue 2, Pages 271–300
DOI: https://doi.org/10.4213/tvp173
(Mi tvp173)
 

This article is cited in 8 scientific papers (total in 8 papers)

Limit theorems for reduced branching processes in a random environment

V. A. Vatutin, E. E. D'yakonova

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: Let $Z(n)$, $n=0,1\dots$ be a branching process evolving in the random environment generated by a sequence of iid generating functions $f_0(s),f_1(s)\dots$ and let $S_0=0$, $S_k=X_1+\dots+X_k$, $k\ge 1$, be the associated random walk with $X_i=\log f_{i-1}'(1)$, and let $\tau(n)$ be the leftmost point of minimum of $\{S_k\}_{k\ge 0}$ on the interval $[0,n]$. Denoting by $Z(k,n)$ the number of particles existing in the branching process at moment $k\le n$ and having nonempty offspring at time $n$ and assuming that the associated random walk satisfies the Spitzer–Doney condition $\mathbf{P}\{S_n>0\}\to\rho\in(0,1)$, $n\to\infty$, we show (under the quenched approach) that for each fixed $m=0,\pm 1,\pm 2,\dots$ the distribution of $Z(\tau(n)+m,n)$ given $Z(n)>0$ converges as $n\to\infty$ to a (random) discrete distribution which is proper with probability 1. On the other hand, if $m=m(n)\to\infty$ as $n\to\infty$, then to prove a conditional limit theorem for $Z(\tau(n)+m,n)$ given $Z(n)>0$, a scaling of $Z(\tau(n)+m,n)$ is needed by a function growing to infinity as $m\to\infty$.
Keywords: branching processes in a random environment, Spitzer–Doney condition, conditional limit theorems, reduced process, most recent common ancestor.
Received: 27.03.2006
English version:
Theory of Probability and its Applications, 2008, Volume 52, Issue 2, Pages 277–302
DOI: https://doi.org/10.1137/S0040585X97982979
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Vatutin, E. E. D'yakonova, “Limit theorems for reduced branching processes in a random environment”, Teor. Veroyatnost. i Primenen., 52:2 (2007), 271–300; Theory Probab. Appl., 52:2 (2008), 277–302
Citation in format AMSBIB
\Bibitem{VatDya07}
\by V.~A.~Vatutin, E.~E.~D'yakonova
\paper Limit theorems for reduced branching processes in a random environment
\jour Teor. Veroyatnost. i Primenen.
\yr 2007
\vol 52
\issue 2
\pages 271--300
\mathnet{http://mi.mathnet.ru/tvp173}
\crossref{https://doi.org/10.4213/tvp173}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2742502}
\zmath{https://zbmath.org/?q=an:1154.60079}
\elib{https://elibrary.ru/item.asp?id=9511773}
\transl
\jour Theory Probab. Appl.
\yr 2008
\vol 52
\issue 2
\pages 277--302
\crossref{https://doi.org/10.1137/S0040585X97982979}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261612800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-47849094113}
Linking options:
  • https://www.mathnet.ru/eng/tvp173
  • https://doi.org/10.4213/tvp173
  • https://www.mathnet.ru/eng/tvp/v52/i2/p271
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:541
    Full-text PDF :166
    References:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024