Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1997, Volume 42, Issue 1, Pages 169–178
DOI: https://doi.org/10.4213/tvp1718
(Mi tvp1718)
 

This article is cited in 7 scientific papers (total in 7 papers)

Maximum likelihood estimator and Kullback–Leibler information in misspecified Markov chain models

P. E. Greenwooda, W. Wefelmeyerb

a University of British Columbia
b University of Siegen
Full-text PDF (555 kB) Citations (7)
Abstract: Suppose we have specified a parametric model for the transition distribution of a Markov chain, but the true transition distribution does not belong to the model. Then the maximum likelihood estimator estimates the parameter which maximizes the Kullback–Leibler information between the true transition distribution and the model. We prove that the maximum likelihood estimator is asymptotically efficient in a nonparametric sense if the true transition distribution is unknown.
Keywords: efficient estimation, Kullback–Leibler information, Markov chain, maximum likelihood estimator, incorrect model.
Received: 31.10.1995
English version:
Theory of Probability and its Applications, 1998, Volume 42, Issue 1, Pages 103–111
DOI: https://doi.org/10.1137/S0040585X9797599X
Bibliographic databases:
Language: English
Citation: P. E. Greenwood, W. Wefelmeyer, “Maximum likelihood estimator and Kullback–Leibler information in misspecified Markov chain models”, Teor. Veroyatnost. i Primenen., 42:1 (1997), 169–178; Theory Probab. Appl., 42:1 (1998), 103–111
Citation in format AMSBIB
\Bibitem{GreWef97}
\by P.~E.~Greenwood, W.~Wefelmeyer
\paper Maximum likelihood estimator and Kullback--Leibler information in misspecified Markov chain models
\jour Teor. Veroyatnost. i Primenen.
\yr 1997
\vol 42
\issue 1
\pages 169--178
\mathnet{http://mi.mathnet.ru/tvp1718}
\crossref{https://doi.org/10.4213/tvp1718}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1453336}
\zmath{https://zbmath.org/?q=an:0947.62052}
\transl
\jour Theory Probab. Appl.
\yr 1998
\vol 42
\issue 1
\pages 103--111
\crossref{https://doi.org/10.1137/S0040585X9797599X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000073918900008}
Linking options:
  • https://www.mathnet.ru/eng/tvp1718
  • https://doi.org/10.4213/tvp1718
  • https://www.mathnet.ru/eng/tvp/v42/i1/p169
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:322
    Full-text PDF :169
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024