|
This article is cited in 7 scientific papers (total in 7 papers)
Maximum likelihood estimator and Kullback–Leibler information in misspecified Markov chain models
P. E. Greenwooda, W. Wefelmeyerb a University of British Columbia
b University of Siegen
Abstract:
Suppose we have specified a parametric model for the transition distribution of a Markov chain, but the true transition distribution does not belong to the model. Then the maximum likelihood estimator estimates the parameter which maximizes the Kullback–Leibler information between the true transition distribution and the model. We prove that the maximum likelihood estimator is asymptotically efficient in a nonparametric sense if the true transition distribution is unknown.
Keywords:
efficient estimation, Kullback–Leibler information, Markov chain, maximum likelihood estimator, incorrect model.
Received: 31.10.1995
Citation:
P. E. Greenwood, W. Wefelmeyer, “Maximum likelihood estimator and Kullback–Leibler information in misspecified Markov chain models”, Teor. Veroyatnost. i Primenen., 42:1 (1997), 169–178; Theory Probab. Appl., 42:1 (1998), 103–111
Linking options:
https://www.mathnet.ru/eng/tvp1718https://doi.org/10.4213/tvp1718 https://www.mathnet.ru/eng/tvp/v42/i1/p169
|
Statistics & downloads: |
Abstract page: | 322 | Full-text PDF : | 169 | First page: | 20 |
|