Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1997, Volume 42, Issue 1, Pages 21–34
DOI: https://doi.org/10.4213/tvp1709
(Mi tvp1709)
 

This article is cited in 20 scientific papers (total in 20 papers)

Maximum of the critical Galton–Watson processes and left-continuous random walks

V. A. Vatutina, V. A. Topchiib

a Steklov Mathematical Institute, Russian Academy of Sciences
b Institute of Information Technologies and Applied Mathematics
Abstract: Let $Z(n)$, $n=0,1,\dots$ be a critical Galton–Watson branching process, $Z(0)=1$. Under mild conditions on the distribution of $Z(1)$, we prove that
$$ \mathsf{E}\max_{1\le k\le n}Z(k)\sim\log n, \qquad n\to\infty. $$
Keywords: critical branching process, maximum of a branching process, the von Bahr–Esseen inequality, left-continuous random walk.
Received: 11.04.1996
English version:
Theory of Probability and its Applications, 1998, Volume 42, Issue 1, Pages 17–27
DOI: https://doi.org/10.1137/S0040585X97975903
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Vatutin, V. A. Topchii, “Maximum of the critical Galton–Watson processes and left-continuous random walks”, Teor. Veroyatnost. i Primenen., 42:1 (1997), 21–34; Theory Probab. Appl., 42:1 (1998), 17–27
Citation in format AMSBIB
\Bibitem{VatTop97}
\by V.~A.~Vatutin, V.~A.~Topchii
\paper Maximum of the critical Galton--Watson processes and left-continuous random walks
\jour Teor. Veroyatnost. i Primenen.
\yr 1997
\vol 42
\issue 1
\pages 21--34
\mathnet{http://mi.mathnet.ru/tvp1709}
\crossref{https://doi.org/10.4213/tvp1709}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1453327}
\zmath{https://zbmath.org/?q=an:0909.60076}
\transl
\jour Theory Probab. Appl.
\yr 1998
\vol 42
\issue 1
\pages 17--27
\crossref{https://doi.org/10.1137/S0040585X97975903}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000073918900002}
Linking options:
  • https://www.mathnet.ru/eng/tvp1709
  • https://doi.org/10.4213/tvp1709
  • https://www.mathnet.ru/eng/tvp/v42/i1/p21
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:418
    Full-text PDF :132
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024