|
This article is cited in 20 scientific papers (total in 20 papers)
Maximum of the critical Galton–Watson processes and left-continuous random walks
V. A. Vatutina, V. A. Topchiib a Steklov Mathematical Institute, Russian Academy of Sciences
b Institute of Information Technologies and Applied Mathematics
Abstract:
Let $Z(n)$, $n=0,1,\dots$ be a critical Galton–Watson branching process, $Z(0)=1$. Under mild conditions on the distribution of $Z(1)$, we prove that
$$ \mathsf{E}\max_{1\le k\le n}Z(k)\sim\log n, \qquad n\to\infty. $$
Keywords:
critical branching process, maximum of a branching process, the von Bahr–Esseen inequality, left-continuous random walk.
Received: 11.04.1996
Citation:
V. A. Vatutin, V. A. Topchii, “Maximum of the critical Galton–Watson processes and left-continuous random walks”, Teor. Veroyatnost. i Primenen., 42:1 (1997), 21–34; Theory Probab. Appl., 42:1 (1998), 17–27
Linking options:
https://www.mathnet.ru/eng/tvp1709https://doi.org/10.4213/tvp1709 https://www.mathnet.ru/eng/tvp/v42/i1/p21
|
Statistics & downloads: |
Abstract page: | 418 | Full-text PDF : | 132 | First page: | 11 |
|