|
Teoriya Veroyatnostei i ee Primeneniya, 1970, Volume 15, Issue 2, Pages 179–199
(Mi tvp1704)
|
|
|
|
This article is cited in 24 scientific papers (total in 24 papers)
On the speed of convergence in a boundary problem. I
S. V. Nagaev Novosibirsk
Abstract:
Let $\xi_1,\xi_2,\dots$ be a sequence of independent equally distributed random variables with variance 1.
Put $a=\mathbf M\xi_1$, $c_3=\mathbf M|\xi_1-a|^3$.
Let the functions $g_i(t)$, $t\ge0$, $i=1,2$, satisfy the conditions
\begin{gather*}
g_2(t)<g_1(t),\quad g_2(0)<0<g_1(0),
\\
|g_i(t+h)-g_i(t)|<Kh,\quad h>0,
\end{gather*}
where $K$ is some constant.
Put
$$
S_{nk}=\frac1{\sqrt n}\sum_{i=1}^k(\xi_i-a).
$$
Let
\begin{gather*}
W_n=\mathbf P\{g_2(k/n)<S_{nk}<g_1(k/n),\quad k=\overline{1,n}\};
\\
W=\mathbf P\{g_2(t)<\xi(t)-\xi(0)<g_1(t),\quad0\le t\le1\},
\end{gather*}
where $\xi(t)$ is a process of Brownian motion.
The following assertion is proved.
Theorem.{\em There exists an absolute constant $L$ such that
$$
|W_h-W|<L\frac{c_3^2(K+1)}{\sqrt n}.
$$
}
Received: 27.12.1968
Citation:
S. V. Nagaev, “On the speed of convergence in a boundary problem. I”, Teor. Veroyatnost. i Primenen., 15:2 (1970), 179–199; Theory Probab. Appl., 15:2 (1970), 163–186
Linking options:
https://www.mathnet.ru/eng/tvp1704 https://www.mathnet.ru/eng/tvp/v15/i2/p179
|
|