|
This article is cited in 2 scientific papers (total in 2 papers)
Short Communications
On estimation of a location parameter in presence of an ancillary component
A. M. Kagana, C. R. Raob a University of Maryland
b Pennsylvania State University
Abstract:
If $(X, Y)$ is an observation with distribution function $F(x-\theta,y)$, $\sigma^{2}=\textrm{var}(X)$, $\rho=\textrm{corr}(X,Y)$ and $I$ is the Fisher information on $\theta$ in $(X,Y)$, then $I\ge\{\sigma^2(1-\rho^2)\}^{-1}$. The equality sign holds under conditions closely related to the conditions for linearity of the Pitman estimator of $\theta$ from a sample from $F(x-\theta,y)$. The results are extensions of earlier results for the case when only the informative component $X$ is observed.
Keywords:
Fisher information, Pitman estimator.
Received: 21.09.2004
Citation:
A. M. Kagan, C. R. Rao, “On estimation of a location parameter in presence of an ancillary component”, Teor. Veroyatnost. i Primenen., 50:1 (2005), 172–176; Theory Probab. Appl., 50:1 (2006), 129–133
Linking options:
https://www.mathnet.ru/eng/tvp166https://doi.org/10.4213/tvp166 https://www.mathnet.ru/eng/tvp/v50/i1/p172
|
|