Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 1, Pages 162–172
DOI: https://doi.org/10.4213/tvp165
(Mi tvp165)
 

This article is cited in 4 scientific papers (total in 4 papers)

Short Communications

Maximal $l\phi$-inequalities for nonnegative submartingales

U. Röslera, G. Alsmeyerb

a Christian-Albrechts-Universität
b Westfälische Wilhelms-Universität Münster
Full-text PDF (888 kB) Citations (4)
References:
Abstract: Let $(M_n)_{n\ge 0}$ be a nonnegative submartingale and let $M_n^*\stackrel{\textrm{def}}{=}\max_{0\le k\le n}M_k$, $n\ge 0$, be the associated maximal sequence. For nondecreasing convex functions $\phi\colon[0,\infty)\to[0,\infty)$ with $\phi(0)=0$ (Orlicz functions) we provide various inequalities for $E\phi(M_n^*)$ in terms of $E\Phi_a(M_n)$, where, for $a\ge 0$,
$$ \Phi_{a}(x)\,\stackrel{\textrm{def}}{=}\,\int_{a}^{x}\!\!\int_{a}^{s}\frac{\phi'(r)}{r}\,dr\,ds, \qquad x>0. $$
Of particular interest is the case $\phi(x)=x$ for which a variational argument leads us to
$$ EM_n^*\le\Bigg(1+\bigg(E\bigg(\int_{1}^{M_n\vee 1}\log x\,dx\bigg)\bigg)^{1/2}\Bigg)^2. $$
A further discussion shows that the given bound is better than Doob's classical bound $e(e-1)^{-1}(1+\textbf E M_n\log^{+}M_n)$ whenever $\textbf E(M_n-1)^{+}\ge e-2\approx 0.718$.
Keywords: nonnegative submartingale, maximal sequence, Orlicz function, Young function, Choquet representation, convex function inequality.
Received: 10.12.2003
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 1, Pages 118–128
DOI: https://doi.org/10.1137/S0040585X97981548
Bibliographic databases:
Document Type: Article
Language: English
Citation: U. Rösler, G. Alsmeyer, “Maximal $l\phi$-inequalities for nonnegative submartingales”, Teor. Veroyatnost. i Primenen., 50:1 (2005), 162–172; Theory Probab. Appl., 50:1 (2006), 118–128
Citation in format AMSBIB
\Bibitem{RosAls05}
\by U.~R\"osler, G.~Alsmeyer
\paper Maximal $l\phi$-inequalities for nonnegative submartingales
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 1
\pages 162--172
\mathnet{http://mi.mathnet.ru/tvp165}
\crossref{https://doi.org/10.4213/tvp165}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2222745}
\zmath{https://zbmath.org/?q=an:1099.60032}
\elib{https://elibrary.ru/item.asp?id=9153113}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 1
\pages 118--128
\crossref{https://doi.org/10.1137/S0040585X97981548}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000236850700009}
Linking options:
  • https://www.mathnet.ru/eng/tvp165
  • https://doi.org/10.4213/tvp165
  • https://www.mathnet.ru/eng/tvp/v50/i1/p162
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024