|
Teoriya Veroyatnostei i ee Primeneniya, 1970, Volume 15, Issue 1, Pages 145–148
(Mi tvp1621)
|
|
|
|
Short Communications
On approximate solution of stochastic differential equations with retarded argument
T. A. Zamanov Baku
Abstract:
In a separable Hilbert space the stochastic differential equation
$$
dx(t)=\{Ax(t)+K[t,x(t),x(t-\tau)]\}\,dt+\int_\Lambda F[t,\beta,x(t),x(t-\tau)]w(dt\times d\beta)
$$
with the initial condition
$$
x(t)=\varphi(t),\quad-\tau\le t\le0
$$
is given. Here: $\Lambda$ is a measurable space with a measure $\nu(d\beta)$ on the $\sigma$-algebra of measurable sets; $w(dt\times d\beta)$ is a Wiener stochastic measure on $[0,l]\times\Lambda$, satisfying the conditions 1–3; $A$ is a negative determined self-adjoint operator with a dense domain; the operators $K$ and $F$ satisfy the conditions
\begin{gather*}
\|K[t,x,u]-K[t,y,v]\|^2\le N[\|x-y\|^2+\|u-v\|^2],
\\
\int_\Lambda\|F[t,\beta,x(t),x(t-\tau)]-F[t,\beta,y(t),y(t-\tau)]\|^2\nu(d\beta)\le N[\|x(t)-y(t)\|^2+
\\
+\|x(t-\tau)-y(t-\tau)\|^2].
\end{gather*}
In the paper, convergence of Galërkin's approximations is proved.
Received: 19.08.1968
Citation:
T. A. Zamanov, “On approximate solution of stochastic differential equations with retarded argument”, Teor. Veroyatnost. i Primenen., 15:1 (1970), 145–148; Theory Probab. Appl., 15:1 (1970), 139–142
Linking options:
https://www.mathnet.ru/eng/tvp1621 https://www.mathnet.ru/eng/tvp/v15/i1/p145
|
Statistics & downloads: |
Abstract page: | 135 | Full-text PDF : | 78 |
|