Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 1, Pages 145–150
DOI: https://doi.org/10.4213/tvp162
(Mi tvp162)
 

This article is cited in 5 scientific papers (total in 5 papers)

Short Communications

Convergence of triangular transformations of measures

D. E. Aleksandrova

M. V. Lomonosov Moscow State University
Full-text PDF (827 kB) Citations (5)
Abstract: We prove that if a Borel probability measure $\mu$ on a countable product of Souslin spaces satisfies a certain condition of atomlessness, then for every Borel probability measure $\nu$ on this product, there exists a triangular mapping $T_{\mu,\nu}$ that takes $\mu$ to $\nu$. It is shown that in the case of metrizable spaces one can choose triangular mappings in such a way that convergence in variation of measures $\mu_n$ to $\mu$ and of measures $\nu_n$ to $\nu$ implies convergence of the mappings $T_{\mu_n,\nu_n}$ to $T_{\mu,\nu}$ in measure $\mu$.
Keywords: triangular mapping, conditional measure, convergence in variation.
Received: 01.07.2004
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 1, Pages 113–118
DOI: https://doi.org/10.1137/S0040585X97981512
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. E. Aleksandrova, “Convergence of triangular transformations of measures”, Teor. Veroyatnost. i Primenen., 50:1 (2005), 145–150; Theory Probab. Appl., 50:1 (2006), 113–118
Citation in format AMSBIB
\Bibitem{Ale05}
\by D.~E.~Aleksandrova
\paper Convergence of triangular transformations of measures
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 1
\pages 145--150
\mathnet{http://mi.mathnet.ru/tvp162}
\crossref{https://doi.org/10.4213/tvp162}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2222742}
\zmath{https://zbmath.org/?q=an:1091.28008}
\elib{https://elibrary.ru/item.asp?id=9153110}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 1
\pages 113--118
\crossref{https://doi.org/10.1137/S0040585X97981512}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000236850700008}
Linking options:
  • https://www.mathnet.ru/eng/tvp162
  • https://doi.org/10.4213/tvp162
  • https://www.mathnet.ru/eng/tvp/v50/i1/p145
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024