Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 1, Pages 98–114
DOI: https://doi.org/10.4213/tvp160
(Mi tvp160)
 

This article is cited in 53 scientific papers (total in 53 papers)

Continuous ensembles and the capacity of infinite-dimensional quantum channels

A. S. Holevo, M. E. Shirokov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: This paper is devoted to the study of $\chi$-capacity, closely related to the classical capacity of infinite-dimensional quantum channels. For such channels generalized ensembles are defined as probability measures on the set of all quantum states. We establish the compactness of the set of generalized ensembles with averages in an arbitrary compact subset of states. This result enables us to obtain a sufficient condition for the existence of the optimal generalized ensemble for an infinite-dimensional channel with input constraint. This condition is shown to be fulfilled for Bosonic Gaussian channels with constrained mean energy. In the case of convex constraints, a characterization of the optimal generalized ensemble extending the “maximal distance property” is obtained.
Keywords: quantum channel, $\chi$-capacity, generalized ensemble.
Received: 21.09.2004
English version:
Theory of Probability and its Applications, 2005, Volume 50, Issue 1, Pages 86–98
DOI: https://doi.org/10.1137/S0040585X97981470
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. S. Holevo, M. E. Shirokov, “Continuous ensembles and the capacity of infinite-dimensional quantum channels”, Teor. Veroyatnost. i Primenen., 50:1 (2005), 98–114; Theory Probab. Appl., 50:1 (2005), 86–98
Citation in format AMSBIB
\Bibitem{HolShi05}
\by A.~S.~Holevo, M.~E.~Shirokov
\paper Continuous ensembles and the capacity of infinite-dimensional quantum channels
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 1
\pages 98--114
\mathnet{http://mi.mathnet.ru/tvp160}
\crossref{https://doi.org/10.4213/tvp160}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2222739}
\zmath{https://zbmath.org/?q=an:1093.81013}
\elib{https://elibrary.ru/item.asp?id=9153107}
\transl
\jour Theory Probab. Appl.
\yr 2005
\vol 50
\issue 1
\pages 86--98
\crossref{https://doi.org/10.1137/S0040585X97981470}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000236850700006}
Linking options:
  • https://www.mathnet.ru/eng/tvp160
  • https://doi.org/10.4213/tvp160
  • https://www.mathnet.ru/eng/tvp/v50/i1/p98
  • This publication is cited in the following 53 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024