Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 1, Pages 81–97
DOI: https://doi.org/10.4213/tvp159
(Mi tvp159)
 

Compactness and the concentration functions of the convolutions of a distribution

B. A. Rogozin

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science
References:
Abstract: A relationship is investigated between the compactness conditions of the distributions of sums of independent identically distributed random variables under an appropriate scaling and the behavior of the sequence of concentration functions of these sums.
Keywords: independent identically distributed random variables, sum, convolution, median, quantile, compactness, finite noncompactness, Levy concentration function, censored variance, majorizied varying function, unimodal distribution.
Received: 15.06.2001
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 1, Pages 99–111
DOI: https://doi.org/10.1137/S0040585X97981603
Bibliographic databases:
Language: Russian
Citation: B. A. Rogozin, “Compactness and the concentration functions of the convolutions of a distribution”, Teor. Veroyatnost. i Primenen., 50:1 (2005), 81–97; Theory Probab. Appl., 50:1 (2006), 99–111
Citation in format AMSBIB
\Bibitem{Rog05}
\by B.~A.~Rogozin
\paper Compactness and the concentration functions of the
convolutions of a distribution
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 1
\pages 81--97
\mathnet{http://mi.mathnet.ru/tvp159}
\crossref{https://doi.org/10.4213/tvp159}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2222738}
\zmath{https://zbmath.org/?q=an:1094.60009}
\elib{https://elibrary.ru/item.asp?id=9153106}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 1
\pages 99--111
\crossref{https://doi.org/10.1137/S0040585X97981603}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000236850700007}
Linking options:
  • https://www.mathnet.ru/eng/tvp159
  • https://doi.org/10.4213/tvp159
  • https://www.mathnet.ru/eng/tvp/v50/i1/p81
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :166
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024