Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 1, Pages 52–80
DOI: https://doi.org/10.4213/tvp158
(Mi tvp158)
 

This article is cited in 5 scientific papers (total in 5 papers)

Constructing a stochastic integral of a nonrandom function without orthogonality of the noise

I. S. Borisov, A. A. Bystrov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: In this paper the construction of a stochastic integral of a nonrandom function is suggested without the classical orthogonality condition of the noise. This construction includes some known constructions of univariate and multiple stochastic integrals. Conditions providing the existence of this integral are specified for noises generated by random processes with nonorthogonal increments from certain classes which are rich enough.
Keywords: stochastic integral, multiple stochastic integral, noise, Gaussian processes, regular fractional Brownian motion.
Received: 09.06.2004
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 1, Pages 53–74
DOI: https://doi.org/10.1137/S0040585X97981469
Bibliographic databases:
Language: Russian
Citation: I. S. Borisov, A. A. Bystrov, “Constructing a stochastic integral of a nonrandom function without orthogonality of the noise”, Teor. Veroyatnost. i Primenen., 50:1 (2005), 52–80; Theory Probab. Appl., 50:1 (2006), 53–74
Citation in format AMSBIB
\Bibitem{BorBys05}
\by I.~S.~Borisov, A.~A.~Bystrov
\paper Constructing a stochastic integral of a nonrandom function without orthogonality of the noise
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 1
\pages 52--80
\mathnet{http://mi.mathnet.ru/tvp158}
\crossref{https://doi.org/10.4213/tvp158}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2222737}
\zmath{https://zbmath.org/?q=an:1099.60038}
\elib{https://elibrary.ru/item.asp?id=9153105}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 1
\pages 53--74
\crossref{https://doi.org/10.1137/S0040585X97981469}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000236850700004}
Linking options:
  • https://www.mathnet.ru/eng/tvp158
  • https://doi.org/10.4213/tvp158
  • https://www.mathnet.ru/eng/tvp/v50/i1/p52
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025