Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 1, Pages 27–51
DOI: https://doi.org/10.4213/tvp157
(Mi tvp157)
 

This article is cited in 10 scientific papers (total in 10 papers)

Nonlinear transformations of convex measures

V. I. Bogachev, A. V. Kolesnikov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Given a uniformly convex measure $\mu$ on $R^\infty$ that is equivalent to its translation to the vector $(1,0,0,\ldots)$ and a probability measure $\nu$ that is absolutely continuous with respect to $\mu$, we show that there is a Borel mapping $T=(T_k)_{k=1}^\infty$ of $R^\infty$ transforming $\mu$ into $\nu$ and having the form $T(x)=x+F(x)$, where $F$ has values in $l^2$. Moreover, if $\mu$ is a product-measure, then $T$ can be chosen triangular in the sense that each component $T_k$ is a function of $x_1,\dots,x_k$. In addition, for any uniformly convex measure $\mu$ on $R^\infty$ and any probability measure $\nu$ with finite entropy $\textrm{ent}_\mu(\nu)$ with respect to $\mu$, the canonical triangular mapping $T=I+F$ transforming $\mu$ into $\nu$ satisfies the inequality $\|F\|_{L^2(\mu,l^2)}^2\le C(\mu)\textrm{ent}_\mu (\nu)$. Several inverse assertions are proved. Our results apply, in particular, to the standard Gaussian product-measure. As an application we obtain a new sufficient condition for the absolute continuity of a nonlinear image of a convex measure and the membership of the corresponding Radon–Nikodym derivative in the class $L\log L$.
Keywords: convex measure, Gaussian measure, product-measure, Cameron–Martin space, absolute continuity, triangular mapping.
Received: 01.07.2004
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 1, Pages 34–52
DOI: https://doi.org/10.1137/S0040585X97981457
Bibliographic databases:
Language: Russian
Citation: V. I. Bogachev, A. V. Kolesnikov, “Nonlinear transformations of convex measures”, Teor. Veroyatnost. i Primenen., 50:1 (2005), 27–51; Theory Probab. Appl., 50:1 (2006), 34–52
Citation in format AMSBIB
\Bibitem{BogKol05}
\by V.~I.~Bogachev, A.~V.~Kolesnikov
\paper Nonlinear transformations of convex measures
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 1
\pages 27--51
\mathnet{http://mi.mathnet.ru/tvp157}
\crossref{https://doi.org/10.4213/tvp157}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2222736}
\zmath{https://zbmath.org/?q=an:1091.28009}
\elib{https://elibrary.ru/item.asp?id=9153104}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 1
\pages 34--52
\crossref{https://doi.org/10.1137/S0040585X97981457}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000236850700003}
Linking options:
  • https://www.mathnet.ru/eng/tvp157
  • https://doi.org/10.4213/tvp157
  • https://www.mathnet.ru/eng/tvp/v50/i1/p27
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025