Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1970, Volume 15, Issue 1, Pages 106–107 (Mi tvp1567)  

This article is cited in 19 scientific papers (total in 19 papers)

Short Communications

On an infinite-dimensional version of S. N. Bernstein's inequalities

V. V. Yurinskii

Moscow
Abstract: Probability inequalities for sums of bounded independent random vectors in a Hilbert space are obtained. Reduction to one-ditnensieeal case yields a considerable simplification of the proofs.
Received: 17.09.1969
English version:
Theory of Probability and its Applications, 1970, Volume 15, Issue 1, Pages 108–109
DOI: https://doi.org/10.1137/1115008
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. V. Yurinskii, “On an infinite-dimensional version of S. N. Bernstein's inequalities”, Teor. Veroyatnost. i Primenen., 15:1 (1970), 106–107; Theory Probab. Appl., 15:1 (1970), 108–109
Citation in format AMSBIB
\Bibitem{Yur70}
\by V.~V.~Yurinskii
\paper On an infinite-dimensional version of S.\,N.~Bernstein's inequalities
\jour Teor. Veroyatnost. i Primenen.
\yr 1970
\vol 15
\issue 1
\pages 106--107
\mathnet{http://mi.mathnet.ru/tvp1567}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=268941}
\zmath{https://zbmath.org/?q=an:0216.46601}
\transl
\jour Theory Probab. Appl.
\yr 1970
\vol 15
\issue 1
\pages 108--109
\crossref{https://doi.org/10.1137/1115008}
Linking options:
  • https://www.mathnet.ru/eng/tvp1567
  • https://www.mathnet.ru/eng/tvp/v15/i1/p106
  • This publication is cited in the following 19 articles:
    1. Emanuele Dolera, Stefano Favaro, Edoardo Mainini, “Strong posterior contraction rates via Wasserstein dynamics”, Probab. Theory Relat. Fields, 2024  crossref
    2. Vivien Cabannes, 2023 IEEE International Conference on Big Data (BigData), 2023, 1059  crossref
    3. Vladislav Kargin, “A large deviation inequality for vector functions on finite reversible Markov Chains”, Ann. Appl. Probab., 17:4 (2007)  crossref
    4. F. Götze, Yu. V. Prokhorov, V. V. Ulyanov, “Bounds for characteristic functions of polynomials in asymptotically normal random variables”, Russian Math. Surveys, 51:2 (1996), 181–204  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    5. E. R. Vvedenskaya, “On the Monotonity of Exact Upper Sequences for Sums of Independent Random Vectors in Hilbert Space”, Theory Probab. Appl., 33:1 (1988), 148–151  mathnet  mathnet  crossref  isi
    6. I. F. Pinelis, A. I. Sahanenko, “Remarks on inequalities for the probabilities of large deviations”, Theory Probab. Appl., 30:1 (1986), 143–148  mathnet  mathnet  crossref  isi
    7. E. R. Vvedenskaya, “On asymptotic behaviour of sums of random vectors with values in Hilbert space”, Theory Probab. Appl., 29:3 (1985), 620–622  mathnet  mathnet  crossref  isi
    8. L. V. Osipov, V. I. Rotar', “On an infinite-dimensional central limit theorem”, Theory Probab. Appl., 29:2 (1985), 375–383  mathnet  mathnet  crossref  isi
    9. Yu. V. Borovskih, “Estimates of the characteristic functions with applications to ω2-statistics. I”, Theory Probab. Appl., 29:3 (1985), 488–503  mathnet  mathnet  crossref  isi
    10. B. A. Zalesskiǐ, “Estimates of the accuracy of normal approximation in a Hilbert space”, Theory Probab. Appl., 27:2 (1983), 290–298  mathnet  mathnet  crossref  isi
    11. V. M. Kruglov, S. N. Antonov, “On the asymptotical behaviour of infinitely divisible distributions in a Banach space”, Theory Probab. Appl., 27:4 (1983), 667–687  mathnet  mathnet  crossref  isi
    12. L. V. Osipov, “On the probabilities of large deviations for sums of independent random vectors”, Theory Probab. Appl., 23:3 (1979), 490–506  mathnet  mathnet  crossref
    13. N. К. Arenbaev, “On inequalities for random vectors”, Theory Probab. Appl., 22:3 (1978), 574–579  mathnet  mathnet  crossref
    14. V. V. Yurinskiǐ, “On the error of the Gaussian approximation for convolutions”, Theory Probab. Appl., 22:2 (1978), 236–247  mathnet  mathnet  crossref
    15. “Summaries of papers presented at the sessions of the probability and statistics section of the Moscow mathematical society (February–October 1974)”, Theory Probab. Appl., 20:2 (1976), 428–443  mathnet  mathnet  crossref
    16. V. V. Yurinskii, “Exponential bounds for large deviations”, Theory Probab. Appl., 19:1 (1974), 154–155  mathnet  mathnet  crossref
    17. V. M. Kruglov, “Convergence of numerical characteristics of sums of independent random variables with vakues in a Hilbert space”, Theory Probab. Appl., 18:4 (1974), 694–712  mathnet  mathnet  crossref
    18. V. V. Yurinskiǐ, “On inequalities for large deviations of certain statistics”, Theory Probab. Appl., 16:2 (1971), 385–387  mathnet  mathnet  crossref
    19. Š. S. Èbralidze, “Inequalities for the probabilities of large deviations in the multi-dimensional case”, Theory Probab. Appl., 16:4 (1971), 733–737  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:333
    Full-text PDF :167
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025