Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1998, Volume 43, Issue 3, Pages 509–539
DOI: https://doi.org/10.4213/tvp1557
(Mi tvp1557)
 

This article is cited in 12 scientific papers (total in 12 papers)

General criteria of integrability of functions of passage-times for non-negative stochastic processes and their applications

S. Aspandiiarova, R. Iasnogorodskib

a UFR de Mathématiques et Informatique, Université Paris V, Paris
b MAPMO, Université d'Orléans
Abstract: In this paper we study the question of integrability of functions of the first passage-times into compact sets and first return-times for stochastic processes with discrete parameter. We consider first a class of processes with negative drifts taking values in $\mathbb{R}_{+}$ and prove for them general sufficient conditions for integrability of functions of these random times. The conditions are formulated in a martingale spirit initiated by Foster and generalize corresponding results obtained earlier. In the second part of the paper we address a similar question for reflected random walks in a quadrant with zero-drift in the interior. Applying the results of the first part we get conditions for integrability of certain functions of the first passage-times and the first return-times for the reflected random walks. The obtained estimates provide quite sharp results for the former random times and complement the corresponding results in [S. Aspandiiarov and R. Iasnogorodski, Tails of passage-time for non-negative stochastic processes and an application to stochastic processes with boundary reflection in a wedge, Stochastic Process. Appl., 66 (1997), pp. 115–145]. Finally, we derive bounds for the rate of convergence of transition probabilities of ergodic reflected random walks to the corresponding invariant measure.
Keywords: passage-times, countable Markov chains, recurrence classification, reflected random walks with boundary reflection.
Received: 17.02.1997
English version:
Theory of Probability and its Applications, 1999, Volume 43, Issue 3, Pages 343–369
DOI: https://doi.org/10.1137/S0040585X97977033
Bibliographic databases:
Language: English
Citation: S. Aspandiiarov, R. Iasnogorodski, “General criteria of integrability of functions of passage-times for non-negative stochastic processes and their applications”, Teor. Veroyatnost. i Primenen., 43:3 (1998), 509–539; Theory Probab. Appl., 43:3 (1999), 343–369
Citation in format AMSBIB
\Bibitem{AspIas98}
\by S.~Aspandiiarov, R.~Iasnogorodski
\paper General criteria of integrability of functions of passage-times for non-negative stochastic processes and their applications
\jour Teor. Veroyatnost. i Primenen.
\yr 1998
\vol 43
\issue 3
\pages 509--539
\mathnet{http://mi.mathnet.ru/tvp1557}
\crossref{https://doi.org/10.4213/tvp1557}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1681072}
\zmath{https://zbmath.org/?q=an:0953.60062}
\transl
\jour Theory Probab. Appl.
\yr 1999
\vol 43
\issue 3
\pages 343--369
\crossref{https://doi.org/10.1137/S0040585X97977033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000085137400001}
Linking options:
  • https://www.mathnet.ru/eng/tvp1557
  • https://doi.org/10.4213/tvp1557
  • https://www.mathnet.ru/eng/tvp/v43/i3/p509
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:265
    Full-text PDF :215
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024