Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2006, Volume 51, Issue 1, Pages 241–255
DOI: https://doi.org/10.4213/tvp155
(Mi tvp155)
 

This article is cited in 6 scientific papers (total in 6 papers)

Branching diffusions on $H^d$ with variable fission: The Hausdorff dimension of the limiting set

M. Ya. Kelberta, Yu. M. Sukhovbc

a University of Wales Swansea
b Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge
c A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Abstract: This paper extends results of previous papers [S. Lalley and T. Sellke, Probab. Theory Related Fields, 108 (1997), pp. 171–192] and [F. I. Karpelevich, E. A. Pechersky, and Yu. M. Suhov, Comm. Math. Phys., 195 (1998), pp. 627–642] on the Hausdorff dimension of the limiting set of a homogeneous hyperbolic branching diffusion to the case of a variable fission mechanism. More precisely, we consider a nonhomogeneous branching diffusion on a Lobachevsky space $H^d$ and assume that parameters of the process uniformly approach their limiting values at the absolute $\partialH^d$. Under these assumptions, a formula is established for the Hausdorff dimension $h(\Lambda)$ of the limiting (random) set $\Lambda\subseteq\partialH^d$, which agrees with formulas obtained in the papers cited above for the homogeneous case. The method is based on properties of the minimal solution to a Sturm–Liouville equation, with a potential taking two values, and elements of the harmonic analysis on $H^d$.
Keywords: Lobachevsky space, branching diffusion, limiting set, Hausdorff dimension, horospheric projection, equidistant projection, Sturm–Liouville equation, minimal positive solution.
Received: 04.09.2005
English version:
Theory of Probability and its Applications, 2007, Volume 51, Issue 1, Pages 155–167
DOI: https://doi.org/10.1137/S0040585X97982281
Bibliographic databases:
Language: English
Citation: M. Ya. Kelbert, Yu. M. Sukhov, “Branching diffusions on $H^d$ with variable fission: The Hausdorff dimension of the limiting set”, Teor. Veroyatnost. i Primenen., 51:1 (2006), 241–255; Theory Probab. Appl., 51:1 (2007), 155–167
Citation in format AMSBIB
\Bibitem{KelSuk06}
\by M.~Ya.~Kelbert, Yu.~M.~Sukhov
\paper Branching diffusions on $H^d$ with variable fission: The Hausdorff dimension of the limiting set
\jour Teor. Veroyatnost. i Primenen.
\yr 2006
\vol 51
\issue 1
\pages 241--255
\mathnet{http://mi.mathnet.ru/tvp155}
\crossref{https://doi.org/10.4213/tvp155}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2324175}
\zmath{https://zbmath.org/?q=an:1112.60081}
\elib{https://elibrary.ru/item.asp?id=9233598}
\transl
\jour Theory Probab. Appl.
\yr 2007
\vol 51
\issue 1
\pages 155--167
\crossref{https://doi.org/10.1137/S0040585X97982281}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000245677000009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247507082}
Linking options:
  • https://www.mathnet.ru/eng/tvp155
  • https://doi.org/10.4213/tvp155
  • https://www.mathnet.ru/eng/tvp/v51/i1/p241
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024