Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2007, Volume 52, Issue 4, Pages 660–684
DOI: https://doi.org/10.4213/tvp1528
(Mi tvp1528)
 

This article is cited in 2 scientific papers (total in 2 papers)

Large-Time Behavior of a Branching Diffusion on a Hyperbolic Space

M. Ya. Kelberta, Yu. M. Sukhovb

a University of Wales Swansea
b Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge
References:
Abstract: In this paper we consider a general hyperbolic branching diffusion on a Lobachevsky space $H^d$. The question is to evaluate the Hausdorff dimension of the limiting set on the boundary (i.e., absolute) $\partialH^d$. In the case of a homogeneous branching diffusion, an elegant formula for the Hausdorff dimension was obtained by Lalley and Sellke [Probab. Theory Related Fields, 108 (1997), pp. 171–192] for $d=2$ and by Karpelevich, Pechersky, and Suhov [Commun. Math. Phys., 195 (1998), pp. 627–642] for a general $d$. Later on, Kelbert and Suhov [Probab. Theory Appl., 51 (2007), pp. 155–167] extended the formula to the case where the branching diffusion was in a sense asymptotically homogeneous (i.e., its main relevant parameter, the fission potential, approached a constant limiting value near the absolute). In this paper we show that the Hausdorff dimension of the limiting set can be bounded from above and below in terms of the maximum and minimum points of the fission potential. As in [M. Kelbert and Y. M. Suhov, Probab. Theory Appl., 51 (2007), pp. 155–167], the method is based on properties of the minimal solution to a Sturm–Liouville problem with general potential and elements of the harmonic analysis on $H^d$. We also relate the Hausdorff dimension with properties of recurrence and transience of a branching diffusion, as was defined by Grigoryan and Kelbert [Ann. Probab., 31 (2003), pp. 244–284] on a general-type manifold.
Keywords: hyperbolic space, branching diffusion, transience, recurrence, limiting set, Hausdorff dimension, horospheric projection, elliptic PDEs, Sturm-Liouville problems, minimal positive solution.
Received: 06.09.2006
English version:
Theory of Probability and its Applications, 2008, Volume 52, Issue 4, Pages 594–613
DOI: https://doi.org/10.1137/S0040585X97983250
Bibliographic databases:
Language: Russian
Citation: M. Ya. Kelbert, Yu. M. Sukhov, “Large-Time Behavior of a Branching Diffusion on a Hyperbolic Space”, Teor. Veroyatnost. i Primenen., 52:4 (2007), 660–684; Theory Probab. Appl., 52:4 (2008), 594–613
Citation in format AMSBIB
\Bibitem{KelSuk07}
\by M.~Ya.~Kelbert, Yu.~M.~Sukhov
\paper Large-Time Behavior of a Branching Diffusion on a Hyperbolic Space
\jour Teor. Veroyatnost. i Primenen.
\yr 2007
\vol 52
\issue 4
\pages 660--684
\mathnet{http://mi.mathnet.ru/tvp1528}
\crossref{https://doi.org/10.4213/tvp1528}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2742870}
\zmath{https://zbmath.org/?q=an:1161.60332}
\transl
\jour Theory Probab. Appl.
\yr 2008
\vol 52
\issue 4
\pages 594--613
\crossref{https://doi.org/10.1137/S0040585X97983250}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262081600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-56749181170}
Linking options:
  • https://www.mathnet.ru/eng/tvp1528
  • https://doi.org/10.4213/tvp1528
  • https://www.mathnet.ru/eng/tvp/v52/i4/p660
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:419
    Full-text PDF :183
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024