Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2007, Volume 52, Issue 1, Pages 190–199
DOI: https://doi.org/10.4213/tvp15
(Mi tvp15)
 

This article is cited in 14 scientific papers (total in 14 papers)

Short Communications

On the continuity of weak solutions of backward stochastic differential equations

R. Buckdahna, H.-J. Engelbertb

a Laboratoire des Mathématiques, Université de Bretagne Occidentale, Brest, France
b Institut für Stochastik, Friedrich Schiller-Universität, Jena, Germany
References:
Abstract: In the present paper, the notion of a weak solution of a general backward stochastic differential equation (BSDE), which was introduced by the authors and A. Rǎşcanu in [Theory Probab. Appl., 49 (2005), pp. 16–50], will be discussed. The relationship between continuity of solutions, pathwise uniqueness, uniqueness in law, and existence of a pathwise unique strong solution is investigated. The main result asserts that if all weak solutions of a BSDE are continuous, then the solution is pathwise unique. One should notice that this is a specific result for BSDEs and there is of course no counterpart for (forward) stochastic differential equations (SDEs). As a consequence, if a weak solution exists and all solutions are continuous, then there exists a pathwise unique solution and this solution is strong. Moreover, if the driving process is a continuous local martingale satisfying the previsible representation property, then the converse is also true. In other words, the existence of discontinuous solutions to a BSDE is a natural phenomenon, whenever pathwise uniqueness or, in particular, uniqueness in law is not satisfied. Examples of discontinuous solutions of a certain BSDE were already given in [R. Buckdahn and H.-J. Engelbert, Proceedings of the Fourth Colloquium on Backward Stochastic Differential Equations and Their Applications, to appear]. This was the motivation for the present paper which is aimed at exploring the general situation.
Keywords: backward stochastic differential equations, weak solutions, strong solutions, uniqueness in law, pathwise uniqueness, continuity of solutions, discontinuity of solutions.
Received: 07.09.2006
English version:
Theory of Probability and its Applications, 2008, Volume 52, Issue 1, Pages 152–160
DOI: https://doi.org/10.1137/S0040585X9798292X
Bibliographic databases:
Document Type: Article
Language: English
Citation: R. Buckdahn, H.-J. Engelbert, “On the continuity of weak solutions of backward stochastic differential equations”, Teor. Veroyatnost. i Primenen., 52:1 (2007), 190–199; Theory Probab. Appl., 52:1 (2008), 152–160
Citation in format AMSBIB
\Bibitem{BucEng07}
\by R.~Buckdahn, H.-J.~Engelbert
\paper On the continuity of weak solutions of backward stochastic differential equations
\jour Teor. Veroyatnost. i Primenen.
\yr 2007
\vol 52
\issue 1
\pages 190--199
\mathnet{http://mi.mathnet.ru/tvp15}
\crossref{https://doi.org/10.4213/tvp15}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2354579}
\zmath{https://zbmath.org/?q=an:1153.60032}
\elib{https://elibrary.ru/item.asp?id=9466888}
\transl
\jour Theory Probab. Appl.
\yr 2008
\vol 52
\issue 1
\pages 152--160
\crossref{https://doi.org/10.1137/S0040585X9798292X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254828600012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42549161055}
Linking options:
  • https://www.mathnet.ru/eng/tvp15
  • https://doi.org/10.4213/tvp15
  • https://www.mathnet.ru/eng/tvp/v52/i1/p190
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024