|
Teoriya Veroyatnostei i ee Primeneniya, 1969, Volume 14, Issue 4, Pages 715–718
(Mi tvp1483)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Short Communications
On the stability of decompositions of the unit distribution function
J. Macys Institute of Mathematics and Informatics, AS of Lithuanian SSR, Vilnius
Abstract:
Let $E$ be the unit distribution function
$$
E(x)=
\begin{cases}
0,&x\le0
\\
1,&x>0
\end{cases}
$$
and $F=F_1*F_2$ be a distribution function such that in the uniform metric
$$
\rho(F,E)\le\varepsilon\le1/4.
$$
Let $F_1$ have median 0. We show that
$$
\rho(F_1,E)\le\frac{1-\sqrt{1-4\varepsilon}}2.
$$
and this estimate can not be improved.
Received: 03.03.1969
Citation:
J. Macys, “On the stability of decompositions of the unit distribution function”, Teor. Veroyatnost. i Primenen., 14:4 (1969), 715–718; Theory Probab. Appl., 14:4 (1969), 688–690
Linking options:
https://www.mathnet.ru/eng/tvp1483 https://www.mathnet.ru/eng/tvp/v14/i4/p715
|
|