|
Teoriya Veroyatnostei i ee Primeneniya, 1969, Volume 14, Issue 4, Pages 693–707
(Mi tvp1481)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On limiting distributions for moduli of sequential differences of independent variables
S. S. Vallander, I. A. Ibragimov, N. G. Lindtrop Leningrad
Abstract:
Let $(\xi,\eta)$ be a pair of independent equally distributed random variables, and $F(x)$ be their common distribution function. We define a sequence of pairs $(\xi_n,\eta_n)$ of independent equally distributed random variables with distribution functions $F_n(x)$:
$$
F_1(x)=\mathbf\{|\xi-\eta|<x\},\quad F_{n+1}(x)=\mathbf P\{|\xi_n-\eta_n|<x\},
$$
and prove two theorems concerning the limiting behaviour of $F_n(x)$.
Received: 01.07.1968
Citation:
S. S. Vallander, I. A. Ibragimov, N. G. Lindtrop, “On limiting distributions for moduli of sequential differences of independent variables”, Teor. Veroyatnost. i Primenen., 14:4 (1969), 693–707; Theory Probab. Appl., 14:4 (1969), 668–681
Linking options:
https://www.mathnet.ru/eng/tvp1481 https://www.mathnet.ru/eng/tvp/v14/i4/p693
|
Statistics & downloads: |
Abstract page: | 270 | Full-text PDF : | 108 | First page: | 3 |
|