Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1998, Volume 43, Issue 2, Pages 370–374
DOI: https://doi.org/10.4213/tvp1473
(Mi tvp1473)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

On a formulation of the multiple “disorder” problem

A. F. Nikolaev

Ulyanovsk State University, Faculty of Mathematics and Mechanics
Full-text PDF (254 kB) Citations (1)
Abstract: This paper deals with a formulation of the multiple "disorder" problem. Let $\tau_1,\ldots, \tau_n$ be “disorder” emergence times. Available for observation is a process $x$ with differential $dx_t = \theta_t \,dt +\sigma \,dW_t$, where $\theta_t = \sum_{i=1}^{n}a_i I\{t \ge \tau_i\}$ is a Markov process. Having the realization of the process $x$, it is required to estimate $\tau_i$, $i=1,\ldots,n$. The estimation of time $\tau_i$ is based on verifying the hypothesis about reaching the level $A_i = \sum_{k=1}^{i}a_k$ by the process $\theta$.
Keywords: multiple “disorder” filtration for a Markov process with a countable number of states, decision function.
Received: 19.05.1997
English version:
Theory of Probability and its Applications, 1999, Volume 43, Issue 2, Pages 293–297
DOI: https://doi.org/10.1137/S0040585X97976908
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. F. Nikolaev, “On a formulation of the multiple “disorder” problem”, Teor. Veroyatnost. i Primenen., 43:2 (1998), 370–374; Theory Probab. Appl., 43:2 (1999), 293–297
Citation in format AMSBIB
\Bibitem{Nik98}
\by A.~F.~Nikolaev
\paper On a formulation of the multiple ``disorder'' problem
\jour Teor. Veroyatnost. i Primenen.
\yr 1998
\vol 43
\issue 2
\pages 370--374
\mathnet{http://mi.mathnet.ru/tvp1473}
\crossref{https://doi.org/10.4213/tvp1473}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1679011}
\zmath{https://zbmath.org/?q=an:0949.62074}
\transl
\jour Theory Probab. Appl.
\yr 1999
\vol 43
\issue 2
\pages 293--297
\crossref{https://doi.org/10.1137/S0040585X97976908}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000083189300010}
Linking options:
  • https://www.mathnet.ru/eng/tvp1473
  • https://doi.org/10.4213/tvp1473
  • https://www.mathnet.ru/eng/tvp/v43/i2/p370
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :145
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024