Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1998, Volume 43, Issue 2, Pages 294–314
DOI: https://doi.org/10.4213/tvp1466
(Mi tvp1466)
 

This article is cited in 12 scientific papers (total in 12 papers)

On one generalization of Chernov's distance

N. P. Salikhov

Essential Administration of Information Systems
Abstract: The variable ρ(p;A,B) is introduced to characterize, for a given vector p, the distance between finite sets A and B of vectors of probabilities of outcomes in polynomial schemes of trials having a common set of outcomes. In the case of singletons A={a}, B={p} the value of ρ(p;A,B) coincides with the Chernov distance between p and a. We indicate the probabilistic sense of the generalized Chernov distance ρ(p;A,B) and establish some of its properties. For distinguishing between m polynomial distributions (n,p1),,(n,pm) we consider a Bayesian decision rule, where the proper distribution is found in k{1,,m1} most plausible variants. For this rule, we find explicit and asymptotic (as n) estimates of probabilities of errors depending on at most Cm1k generalized Chernov distances and, moreover, establish, in a sense, its optimality.
Keywords: polynomial scheme of trials, Kullback–Leibler distance, Chernov distance, distinguishing between several simple hypotheses, Bayesian decision rule, estimates of probabilities of errors.
Received: 14.01.1997
English version:
Theory of Probability and its Applications, 1999, Volume 43, Issue 2, Pages 239–255
DOI: https://doi.org/10.1137/S0040585X97976854
Bibliographic databases:
Language: Russian
Citation: N. P. Salikhov, “On one generalization of Chernov's distance”, Teor. Veroyatnost. i Primenen., 43:2 (1998), 294–314; Theory Probab. Appl., 43:2 (1999), 239–255
Citation in format AMSBIB
\Bibitem{Sal98}
\by N.~P.~Salikhov
\paper On one generalization of Chernov's distance
\jour Teor. Veroyatnost. i Primenen.
\yr 1998
\vol 43
\issue 2
\pages 294--314
\mathnet{http://mi.mathnet.ru/tvp1466}
\crossref{https://doi.org/10.4213/tvp1466}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1679004}
\zmath{https://zbmath.org/?q=an:0942.62005}
\transl
\jour Theory Probab. Appl.
\yr 1999
\vol 43
\issue 2
\pages 239--255
\crossref{https://doi.org/10.1137/S0040585X97976854}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000083189300005}
Linking options:
  • https://www.mathnet.ru/eng/tvp1466
  • https://doi.org/10.4213/tvp1466
  • https://www.mathnet.ru/eng/tvp/v43/i2/p294
  • This publication is cited in the following 12 articles:
    1. Hemant K. Mishra, Michael Nussbaum, Mark M. Wilde, “On the optimal error exponents for classical and quantum antidistinguishability”, Lett Math Phys, 114:3 (2024)  crossref
    2. Zixin Huang, Ludovico Lami, Mark M. Wilde, “Exact Quantum Sensing Limits for Bosonic Dephasing Channels”, PRX Quantum, 5:2 (2024)  crossref
    3. Li K., “Discriminating quantum states: The multiple Chernoff distance”, Ann. Stat., 44:4 (2016), 1661–1679  crossref  mathscinet  zmath  isi  elib  scopus
    4. Sabina Zejnilovic, Joao Xavier, Joao Gomes, Bruno Sinopoli, 2015 IEEE International Symposium on Information Theory (ISIT), 2015, 2914  crossref
    5. Nair R., Guha S., Tan S.-H., “Realizable Receivers For Discriminating Coherent and Multicopy Quantum States Near the Quantum Limit”, Phys. Rev. A, 89:3 (2014), 032318  crossref  adsnasa  isi  scopus
    6. Koenraad M. R. Audenaert, Milán Mosonyi, “Upper bounds on the error probabilities and asymptotic error exponents in quantum multiple state discrimination”, Journal of Mathematical Physics, 55:10 (2014)  crossref
    7. Ranjith Nair, Saikat Guha, Si-Hui Tan, 2013 IEEE International Symposium on Information Theory, 2013, 729  crossref
    8. Nussbaum M., Szkola A., “Asymptotically Optimal Discrimination between Pure Quantum States”, Theory of Quantum Computation, Communication, and Cryptography, Lecture Notes in Computer Science, 6519, 2011, 1–8  crossref  mathscinet  zmath  isi  scopus
    9. Michael Nussbaum, Arleta Szkoła, “An asymptotic error bound for testing multiple quantum hypotheses”, Ann. Statist., 39:6 (2011)  crossref
    10. Nussbaum M., Szkola A., “Exponential error rates in multiple state discrimination on a quantum spin chain”, J Math Phys, 51:7 (2010), 072203  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    11. N. P. Salikhov, “Optimal Sequences of Tests for Several Polynomial Schemes of Trials”, Theory Probab. Appl., 47:2 (2003), 286  crossref
    12. A. S. Rybakov, “On the asymptotic optimality of the Bayesian decision rule in the problem of multiple classification of hypotheses”, Theory Probab. Appl., 45:4 (2001), 690–695  mathnet  mathnet  crossref  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:364
    Full-text PDF :195
    First page:6
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025